• Title/Summary/Keyword: $Mn^{2+}$ ion

Search Result 600, Processing Time 0.025 seconds

Novel Counter Ion Effect on the Disruption of the Homobimetallic Anion,$ (\eta^5-MeCp)Mn(CO)_2Mn(CO)_5-M^+ (M^+=Na^+, PPN^{+a}) by PR_3 (R=C_6H_5,\; C_2H_5,\; OCH_3)$

  • 박용광;김선중;이창환
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.462-466
    • /
    • 1998
  • The homobimetallic anion, $({\eta}^5-MeCp)Mn(CO)_2Mn(CO)_5-M^+\; (M^+=Na^+, PPN^+$) was disrupted by $PR_3\;(R=C_6H_5,\;C_2H_5,\;OCH_3)$ in THF at various temperatures (r.t. ∼65℃) under the pseudo first order reaction conditions where excess of $PR_3$ was employed under a nitrogen atmosphere. For the reaction involving $PPN^+$ analog, Mn-Mn heterolytic cleavage occurred, leading to $PPN^+Mn(CO)_5^-\; and \;({\eta}^5-MeCp)Mn(CO)_2PR_3$ as products; however, in case of $Na^+\; analog,\; Na^+$ seems to play a novel counter ion effect on the disruption reaction by transferring one terminal CO from the $Mn(CO)_5$ moiety on to the $({\eta}^5-MeCp)Mn(CO)_2$ of the corresponding homobimetallic complex, eventually resulting in $Na^+Mn(CO)_4PR_3^-\;and\;({\eta}^5-MeCp)Mn(CO)_3$. This reaction is of overall first order with respect to [homobimetallic complex] with the activation parameters (ΔH≠=23.0±0.7 kcal/mol, ΔS≠= - 8.7±0.8 e.u. for $Na^+$ analog; ΔH≠=28.8±0.4 kcal/mol, ΔS≠=15.7±0.6 e.u. for $PPN^+$ analog reaction).

Effects on Electrochemical Performances of Conductive Agents with Different Particle Size in Spinel LiMn2O4 Cathode for Li-ion Batteries (리튬이온전지용 스피넬계 LiMn2O4 양극에서 상이한 입자크기를 가진 전도성물질이 전기화학적 성능에 미치는 영향)

  • Lee, Chang-Woo;Lee, Ml-Sook;Kim, Hyun-Soo;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.702-707
    • /
    • 2005
  • Spinel $LiMn_2O_4$ has become appealing because manganese is inexpensive and environmentally benign. In general, cathodes for lithium ion batteries include carbon as a conductive agent that provides electron transfer between the active material and the current collector. In this work, we selected Acetylene Black and Super P Black as conductive agents, and then carried out their comparative investigation for the performances of the $Li/LiMn_2O_4$ cells using different conductive agents with different particle size. In addition, their electrochemical impedance characteristic of $Li/Mn_2O_4$ cells using different conductive agents is effectively identified through a.c. impedance technique. As a consequence, $Li/LiMn_2O_4$ cells with Super P Black show better electrochemical performances ascribed to the significant contribution of feasible ionic conduction due to larger particle size than those with Acetylene Black.

Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$ (수열합성 조건에 따른 나노로드 클러스터형 $MnO_2$의 상변화와 이를 이용한 $LiMn_2O_4$의 리튬이온전지 양전극 특성)

  • Kang, Kun-Young;Choi, Min Gyu;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.541-547
    • /
    • 2011
  • Nanorod-clustered $MnO_2$ precursors with ${\alpha}$-, ${\beta}$-, and ${\gamma}$-phases are synthesized by hydrothermal reaction of $MnSO_45H_2O$ and $(NH_4)S_2O_8$. The formation of nanorod-clustered ${\beta}-MnO_2$ is particularly confirmed under the conditions of high reactant concentration and hydrothermal reaction at $150^{\circ}C$. The spinel $LiMn_2O_4$ nanorod-clusters are also prepared by lithiating the $MnO_2$ precursors, varying the concentration of lithiating agent ($LiC_3H_3O_2{\cdot}2H_2O$) and heat treatment temperature, and characterized for use as cathode material of lithium-ion batteries. As a result, the nanorod-clustered $LiMn_2O_4$ prepared from the ${\beta}-MnO_2$ at higher $LiC_3H_3O_2{\cdot}2H_2O$ concentration and the annealing at $800^{\circ}C$ is proven to show the cubic spinel structure and to achieve the high initial discharge capacity of 120 mAh/g.

Synthesis of One-dimensional Spinel LiMn2O4 Nanostructures as a Positive Electrode in Lithium Ion Battery

  • Lee, Hyun-Wook;Muralidharan, P.;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.379-383
    • /
    • 2011
  • This paper presents the synthesis of one-dimensional spinel $LiMn_2O_4$ nanostructures using a facile and scalable two-step process. $LiMn_2O_4$ nanorods with average diameter of 100 nm and length of 1.5 ${\mu}m$ have been prepared by solid-state lithiation of hydrothermally synthesized ${\beta}$-$MnO_2$ nanorods. $LiMn_2O_4$ nanowires with diameter of 10 nm and length of several micrometers have been fabricated via solid-state lithiation of ${\beta}$-$MnO_2$ nanowires. The precursors have been lithiated with LiOH and reaction temperature and pressure have been controlled. The complete structural transformation to cubic phase and the maintenance of 1-D nanostructure morphology have been evaluated by XRD, SEM, and TEM analysis. The size distribution of the spinel $LiMn_2O_4$ nanorods/wires has been similar to the $MnO_2$ precursors. By control of reaction pressure, cubic 1-D spinel $LiMn_2O_4$ nanostructures have been fabricated from tetragonal $MnO_2$ precursors even below $500^{\circ}C$.

Mechanochemical Synthesis of ZnMn2O4 and its Electrochemical Properties as an Anode Material for Lithium-ion Batteries

  • Park, Yoon-Soo;Oh, Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3333-3337
    • /
    • 2011
  • $ZnMn_2O_4$ has been prepared by a mechanochemical process using a mixture of $Mn_2O_3$ and ZnO as starting materials, and investigated as a possible anode material for lithium-ion batteries. The phase evolution and morphologies of the ball-milled and annealed powders are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive microanalysis (EDX), respectively. The solid-state reaction for the formation of $ZnMn_2O_4$, under the given experimental conditions, is achieved in a short time (30 min), and the prepared samples exhibit excellent electrochemical performances including an enhanced initial coulombic efficiency, high reversible capacity, and stable capacity retention with cycling.

The effect of precursor solution pH on the energy storage performance of 𝛼-MnO2 cathode for zinc-ion batteries synthesized via hydrothermal method (Zn 이온 배터리용 양극 𝛼-MnO2의 수열 합성 시 전구체 용액의 pH가 에너지 저장 성능에 미치는 영향)

  • Sang-Eun Chun
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.338-347
    • /
    • 2024
  • 𝛼-MnO2 as a cathode material for Zn-ion batteries allows insertion and extraction of Zn ions within its tunnel structure during charge and discharge. The morphology and crystal structure of 𝛼-MnO2 particles critically determine their electrochemical behavior and energy storage performance. In this study, 𝛼-MnO2 was synthesized from precursor solutions under varying pH conditions using a hydrothermal method. The effects of pH values on the morphology, crystal structure, and electrochemical performance were systematically analyzed. The analysis revealed that materials synthesized at higher pH levels exhibited elongated and narrow nanorods with a lower specific surface area. In contrast, those formed at lower pH levels showed shorter, thicker nanorods with a higher specific surface area. This increased surface area at a lower pH enhanced the specific capacitance by providing a greater electrode/electrolyte interfacial area. By contrast, the material synthesized at higher pH conditions demonstrated superior rate capability, attributed to its crystal structure with wider lattice spacings. Wide lattice parameters in the material synthesized at higher pH conditions facilitated easier ion transport than at lower pH levels. Consequently, the study confirms that adjusting the pH of the precursor solution can optimize the electrochemical properties of 𝛼-MnO2 for Zn-ion batteries.

A Study on the Preparation of Metal-Ion Separation Membrane with Hydrophilic Polyphosphazenes (친수성 포스파젠 고분자를 이용한 금속 이온 분리막 제조에 관한 연구)

  • Kwon, Suk-Ky;Lee, Byung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.445-449
    • /
    • 1999
  • Hydrophilic polyphosphazenes were synthesized from hydrophobic polyphosphazenes by adding methoxyethylenoxy side chains and cast by dip-coating method into membranes supported on porous polypropylene mesh filter sheet for metal separation testing. A solution of $Cr^{3+},\;Co^{2+},\;Mn^{2+}$ nitrates was used in diffusion experiments which were conducted from $25^{\circ}C$ to $60^{\circ}C$. lt was found that the ion transport properties were increased as the repeating number of ethylenoxy side chain increased. Membrane from trifluoroethoxy methoxyethoxyethoxyethoxy co-substituted polyphosphazenes was found to separate $Cr^{3+}$ ion from $Mn^{2-}$ and $Co^{2+}$ ions with separation factor of 4.5 at $60^{\circ}C$.

  • PDF

The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries

  • Choi, Mansoo;Jo, In-Ho;Lee, Sang-Hun;Jung, Yang-Il;Moon, Jei-Kwon;Choi, Wang-Kyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.245-250
    • /
    • 2016
  • The layered $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composite with well crystalized and high specific capacity is prepared by molten-salt method and using the substitution of Na for Li-ion battery. The effects of annealing temperature, time, Na contents, and electrochemical performance are investigated. In XRD analysis, the substitution of Na-ion resulted in the P2-$Na_{2/3}MO_2$ structure ($Na_{0.70}MO_{2.05}$), which co-exists in the $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composites. The discharge capacities of cathode materials exhibited $284mAhg^{-1}$ with higher initial coulombic efficiency.

Electrochemical properties of $LiCr_xMn_{1-x}O_2$ cathode materials for lithium ion battery (리튬 이온 이차전지용 $LiCr_xMn_{1-x}O_2$ 정극활물질의 전기 화학적 특성)

  • Jin, En-Mei;Jeon, Yeon-Su;Beak, Hyoung-Ryoul;Gu, Hal-Bon;Son, Myung-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.418-419
    • /
    • 2005
  • $\o-LiMnO_2$ is known to have poor cycle performance causing the irreversible phase transformation on cycling. In this paper, the effect of chemical substitution on improving cycle performance of $o-LiMnO_2$ was studied at the compositions of $LiCr_xMn_{1-x}O_2$(x=0, 0.1, 0.2, 0.4). XRD is showed that structure of $LiCr_xMn_{1-x}O_2$ transformed from orthorhombic to spinel according to the increase of substitute degree. For lithium ion battery applications, $LiCr_xMn_{1-x}O_2$/Li cell were characterized electrochemically by charge/discharge cycling.

  • PDF

Introducing an Efficient and Eco-Friendly Spray-Drying Process for the Synthesis of NCM Precursor for Lithium-ion Batteries

  • Hye-Jin Park;Seong-Ju Sim;Bong-Soo Jin;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.168-177
    • /
    • 2024
  • Ni-rich cathode is one of the promising candidates for high-energy lithium-ion battery applications. Due to its specific capacity, easy industrialization, and good circulation ability, Ni-rich cathode materials have been widely used for lithium-ion batteries. However, due to the limitation of the co-precipitation method, including sewage pollution, and the instability of the long production cycles, developing a new efficient and environmentally friendly synthetic approach is critical. In this study, the Ni0.91Co0.06Mn0.03CO3 precursor powder was successfully synthesized by an efficient spray-drying method using carbonate compounds as a raw material. This Ni0.91Co0.06Mn0.03CO3 precursor was calcined by mixing with LiOH·H2O (5 wt% excess) at 480℃ for 5 hours and then sintered at two different temperatures (780℃/800℃) for 15 hours under an oxygen atmosphere to complete the cathode active material preparation, which is a key component of lithium-ion batteries. As a result, LiNi0.91Co0.06Mn0.03O2 cathode active material powders were obtained successfully via a simple sintering process on the Ni0.91Co0.06Mn0.03CO3 precursor powder. Furthermore, the obtained LiNi0.91Co0.06Mn0.03O2 cathode active material powders were characterized. Overall, the material sintered at 780℃ shows superior electrochemical performance by delivering a discharge capacity of 190.76 mAh/g at 1st cycle (0.1 C) and excellent capacity retention of 66.80% even after 50 cycles.