Acknowledgement
이 성과는 2022년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1A2C1009922).
References
- X. Huang, D. Lv, H. Yue, A. Attia, Y. Yang, Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization, Nanotechnology, 19 (2008) 225606.
- S.E. Chun, S.I. Pyun, G.J. Lee, A study on mechanism of charging/discharging at amorphous manganese oxide electrode in 0.1M Na2SO4 solution, Electrochimica Acta, 51 (2006) 6479-6486.
- L.I. Hill, A. Verbaere, D. Guyomard, MnO2 (α-, β-, γ-) compounds prepared by hydrothermal-electrochemical synthesis: characterization, morphology, and lithium insertion behavior, Journal of Power Sources, 119-121 (2003) 226-231.
- P. Strobel, F. Thiery, C. Darie, O. Proux, A. Ibarra-Palos, M. Bacia, J.B. Soupart, Structural and electrochemical properties of new nanospherical manganese oxides for lithium batteries, Journal of Materials Chemistry, 15 (2005) 4799-4808.
- J.Y. Luo, J.J. Zhang, Y.Y. Xia, Highly electrochemical reaction of lithium in the ordered mesoporous β-MnO2, Chemistry of Materials, 18 (2006) 5618-5623.
- Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase, Chemistry of Materials, 7 (1995) 148-153.
- L. Espinal, S.L. Suib, J.F. Rusling, Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2, Journal of the American Chemical Society, 126 (2004) 7676-7682.
- J.Y. Park, Y.M. Choi, S.E. Chun, Alleviating Mn3+ dissolution in ZnMn2O4 cathode for the extended cyclability via particle size increase, Korean Journal of Metals and Materials, 61 (2023) 923-932.
- S. Han, S. Park, S.H. Yi, W.B. Im, S.E. Chun, Effect of potential and current on electrodeposited MnO2 as a pseudocapacitor electrode: Surface morphology/chemistry and stability, Journal of Alloys and Compounds, 831 (2020) 154838.
- L. Wang, X. Cao, L. Xu, J. Chen, J. Zheng, Transformed akhtenskite MnO2 from Mn3O4 as cathode for a rechargeable aqueous zinc ion battery, ACS Sustainable Chemistry & Engineering, 6 (2018) 16055-16063.
- M. Liu, Q. Zhao, H. Liu, J. Yang, X. Chen, L. Yang, Y. Cui, W. Huang, W. Zhao, A. Song, Y. Wang, S. Ding, Y. Song, G. Qian, H. Chen, F. Pan, Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery, Nano Energy, 64 (2019) 103942.
- S. Birgisson, D. Saha, B.B. Iversen, Formation mechanisms of nanocrystalline MnO2 polymorphs under hydrothermal conditions, Crystal Growth & Design, 18 (2018) 827-838.
- X.F. Shen, Y.S. Ding, J. Liu, J. Cai, K. Laubernds, R.P. Zerger, A. Vasiliev, M. Aindow, S.L. Suib, Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials, Advanced Materials, 17 (2005) 805-809.
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K.T. Mueller, J. Liu, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nature Energy, 1 (2016) 16039.
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nature Communications, 8 (2017) 405.
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries, Advanced Functional Materials, 28 (2018) 1802564.
- C. Wei, C. Xu, B. Li, H. Du, F. Kang, Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage, Journal of Physics and Chemistry of Solids, 73 (2012) 1487-1491.
- B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, (2001).
- U. Holzwarth, N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation', Nature Nanotechnology, 6 (2011) 534-534.
- S. Cui, D. Zhang, G. Zhang, Y. Gan, Reaction mechanism for the α-MnO2 cathode in aqueous Zn ion batteries revisited: elucidating the irreversible transformation of α-MnO2 into Zn-vernadite, Journal of Materials Chemistry A, 10 (2022) 25620-25632.
- A. Bhadra, S. Swathilakshmi, U. Mittal, N. Sharma, G. Sai Gautam, D. Kundu, Averting H+-mediated charge storage chemistry stabilizes the high output voltage of LiMn2O4-based aqueous battery, Small Methods, n/a (2024) 2400070.
- H. Kim, J.C. Kim, S.H. Bo, T. Shi, D.H. Kwon, G. Ceder, K-Ion batteries based on a P2-type K0.6CoO2 cathode, Advanced Energy Materials, 7 (2017) 1700098.
- M.G. Verde, H. Liu, K.J. Carroll, L. Baggetto, G. M. Veith, Y. S. Meng, Effect of morphology and manganese valence on the voltage fade and capacity retention of Li[Li2/12Ni3/12Mn7/12]O2, ACS Applied Materials & Interfaces, 6 (2014) 18868-18877.
- C. Xu, J. Li, X. Feng, J. Zhao, C. Tang, B. Ji, J. Hu, C. Cao, Y. Zhu, F.K. Butt, The improved performance of spinel LiMn2O4 cathode with micro-nanostructured sphere-interconnected-tube morphology and surface orientation at extreme conditions for lithium-ion batteries, Electrochimica Acta, 358 (2020) 136901.
- H. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, J. Li, Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: The critical effects of surface orientations and particle size, ACS Applied Materials & Interfaces, 8 (2016) 4661-4675.
- G.Z. Wei, X. Lu, F.S. Ke, L. Huang, J.T. Li, Z.X. Wang, Z.Y. Zhou, S.G. Sun, Crystal habit-tuned nanoplate material of Li[Li1/3-2/3NixMn2/3/3]O2 for high-rate performance lithium-ion batteries, Advanced Materials, 22 (2010) 4364-4367.
- J. Newman, W. Tiedemann, Porous-electrode theory with battery applications, AIChE Journal, 21 (1975) 25-41.
- A. Vu, Y. Qian, A. Stein, Porous electrode materials for lithium-ion batteries - How to prepare them and what makes them special, Advanced Energy Materials, 2 (2012) 1056-1085.
- Z. Chen, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Porous electrode modeling and its applications to Li-ion batteries, Advanced Energy Materials, 12 (2022) 2201506.
- L. Wang, K. Asheim, P.E. Vullum, A.M. Svensson, F. Vullum-Bruer, Sponge-like porous manganese(II,III) oxide as a highly efficient cathode material for rechargeable magnesium ion batteries, Chemistry of Materials, 28 (2016) 6459-6470.
- D. Lu, Z.J. Yao, Y.Q. Li, Y. Zhong, X.L. Wang, D. Xie, X.H. Xia, C.D. Gu, J.P. Tu, Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries, Journal of Colloid and Interface Science, 565 (2020) 218-226.
- C. Zhu, G. Saito, T. Akiyama, A new CaCO3-template method to synthesize nanoporous manganese oxide hollow structures and their transformation to high-performance LiMn2O4 cathodes for lithium-ion batteries, Journal of Materials Chemistry A, 1 (2013) 7077-7082.
- J. Song, J. Kim, T. Kang, D. Kim, Design of a porous cathode for ultrahigh performance of a Li-ion battery: An overlooked pore distribution, Scientific Reports, 7 (2017) 42521.
- F. Zhan, B. Geng, Y. Guo, Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries, Chemistry - A European Journal, 15 (2009) 6169-6174.
- Z. Li, J. Liu, Y. Qin, T. Gao, Enhancing the charging performance of lithium-ion batteries by reducing SEI and charge transfer resistances, ACS Applied Materials & Interfaces, 14 (2022) 33004-33012.
- T.R. Jow, S.A. Delp, J.L. Allen, J.P. Jones, M.C. Smart, Factors limiting Li+ charge transfer kinetics in Li-ion batteries, Journal of the Electrochemical Society, 165 (2018) A361.
- M.S. Wu, P.C.J. Chiang, J.C. Lin, Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements, Journal of the Electrochemical Society, 152 (2005) A47.
- J. Nishitani, K. M. Yu, W. Walukiewicz, Charge transfer and mobility enhancement at CdO/SnTe heterointerfaces, Applied Physics Letters, 105 (2014) 132103.
- J. Wang, Y. Zhou, Z. Shao, Porous TiO2 (B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries, Electrochimica Acta, 97 (2013) 386-392.
- J. Zheng, R. Dong, P. Liu, X. Peng, W. Tian, X. Lv, S. Tan, J. Ji, Interfacial engineered Fe2O3@FeP nanorod arrays as capacitive storage dominated and high charge transfer anode for high-rate lithium-ion batteries, Surface and Coatings Technology, 421 (2021) 127471.
- S. Sarkar, H. Banda, S. Mitra, High capacity lithium-ion battery cathode using LiV3O8 nanorods, Electrochimica Acta, 99 (2013) 242-252.
- Y. Liu, X. Chi, Q. Han, Y. Du, J. Huang, Y. Liu, J. Yang, α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries, Journal of Power Sources, 443 (2019) 227244.
- B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery, Small, 14 (2018) 1703850.
- M.H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew, J. Kim, Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode, Journal of Power Sources, 288 (2015) 320-327.
- X. Pu, X. Li, Y. Xi, J. Zhang, J. Wang, W. Li, Tuning crystal water of α-MnO2 with enhanced diffusion kinetics for zinc-ion batteries, Journal of Solid State Electrochemistry, (2023).
- M. Singh, J. Kaiser, H. Hahn, Thick electrodes for high energy lithium ion batteries, Journal of the Electrochemical Society, 162 (2015) A1196.