• Title/Summary/Keyword: $MgCl_2\

Search Result 2,274, Processing Time 0.122 seconds

Formation and Control of Calcium Carbonate Films having Aragonite Crystal Structure by Electro-Chemical Process (전기화학적 프로세스에 의한 아라고나이트 결정구조 탄산칼슘 막의 형성 및 제어)

  • Lee, Seung-Hyo;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.325-331
    • /
    • 2018
  • Calcium carbonate($CaCO_3$) films were formed by an eco-friendly electro-chemical technique on steel substrates in synthesized distilled water solutions containing $NaHCO_3$, $CaCl_2$ and $MgCl_2$ with different ratio respectively. It was investigated to confirm the effect of $Mg^{2+}$ concentration by Scanning Electron Microscopy(SEM), Energy Dispersive x-ray Spectroscopy(EDS) and X-Ray Diffraction(XRD) respectively. From an experimental result, only calcite crystals were found in solution containing no $Mg^{2+}$. By increasing concentration of $Mg^{2+}$, deposition rate decreased and crystal structure was transformed form calcite to aragonite. In case of including $MgCl_2$ 300mM in synthesized solutions containing $NaHCO_3$, $CaCl_2$ 60mM, it was showed over the 90% of aragonite contents which have quite high deposition rate of aragonite. Also, it was confirmed that $Mg^{2+}$ acted as inhibitor on the films which made transforming from calcite to aragonite.

Electrochemistry of bis(1,10-phenanthroline)copper(II)-sodium dodecyl sulfate solution in the presence of MgCl2 (염화마그네슘 존재 하의 비스(1,10-페난트롤린) 구리(II)-도데실황산나트륨 용액의 전기화학)

  • Ko, Young Chun
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.483-487
    • /
    • 2007
  • Electrochemistry of 1.0 mM bis(1,10-phenanthroline)copper(II) $(Cu(ph){_2}^{2+})$ in 100 mM NaCl solution including 27 mM $MgCl_2$ with and without sodium dodecyl sulfate (SDS) is studied. In the presence of SDS, $E_{pa}$ and $E_{1/2}$ of $Cu(ph){_2}^{2+}$ by adding $Mg^{2+}$ shifts to a positive direction compared to the SDS free. The intersection of two lines on ${\Delta}E_p$ vs -log[SDS] plot is determined as a critical micelle concentration (CMC). When $Mg^{2+}$ is added, it seems that the double layer became more compact. And the formation of micelles is retarded.

Comparison of Protein DNA, and RNA Contents in Corpus Luteum without and with Central Cavity in Dairy Cow (젖소의 난소 황체에 있어서 중심강의 유무에 따른 Protein, DNA, RNA 함량의 비교)

  • ;Y. S. Kim;C. N. Lee
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.1
    • /
    • pp.73-78
    • /
    • 2002
  • This study was conducted to investigate total protein, DNA, and RNA content in corpus luteum(CL) without and with central cavity in dairy cow. Stage of the estrous cycle of corpus luteum from slaughterhouse(CL3, days 11 to 17) was classified by method of Ireland et. al.(1980). Corpus luteum was classified into corpus luteum without(less than 2mm in diameter) and with central cavity(more than 2mm in diameter) by method of Kastelic et. al.(1990). 1 In total protein content, CL with central cavity did not differ from CL without central cavity. 2. In DNA content, CL with central cavity was significantly lower than CL without central cavity(p<0.05). 3. In protein: DNA ratios, CL with central cavity was significantly lower than CL without central cavity(p<0.05). 4. But in RNA content, protein:RNA and RNA:DNA ratios, CL with central cavity did not differ from CL without central cavity.

Effects of Squalene in Mouse Kidney with Contaminated Mercury (흰쥐의 신장에서 수은독성에 대한 스쿠알렌의 효과)

  • Kim, Jong-Se;Lee, Kyung-Hee
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.389-401
    • /
    • 2000
  • The mouse for identifying the histological changes of kidney were also divided into the two groups; treated with only $HgCl_2$ (4 mg/kg), the group treated with $HgCl_2$ and squalene (200 mg/kg). The $HgCl_2$ treated only one time at first day. The squalene treated two times a day (12 hours interval) for every day. Each groups were divided into the five groups; 6, 12, 24, 48 and 72 hours after treated $HgCl_2$ and squalene. Historical changes of the kidneys were investigated by electron microscope. The group with only $HgCl_2$ showed that the nuclear membrane was shrinked, the inner membrane (cristae) of the mitochondria were destructed, and ribosomes on the rough endoplasmic reticulum were lost. The group treated with $HgCl_2$ and Squalene showed that the nuclear membrane was more rounded, the cristae of the mitochondria were almost normal shape, and more ribosomes on the rough endoplasmic reticulum were attached. Therefore , we concluded that squalene has significantly protective effects in kidney to harmful $HgCl_2$.

  • PDF

Removal of Nitrogen and Phosphorus Using Struvite Crystallization (Struvite 결정화에 의한 질소 및 인의 제거)

  • Weon, Seung-Yeon;Park, Seung-Kook;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.599-607
    • /
    • 2000
  • In this research, ${NH_4}^+-N$ and ${PO_4}^{3-}-P$ in wastewater were removed by crystallization. Nitrogen and phosphate have been regarded as key nutrients in the eutrophication of rivers and lakes. Struvite, $MgNH_4PO_4{\cdot}6H_2O$, is insoluble in alkaline solutions. Fertilizer industry wastewater contains organic and nitrogen concentration of 330 mg/L and 550 mg/L, respectively. Nitrogen in this wastewater cannot be treated by conventional biological treatment without physicochemical pretreatment, because nitrogen concentration is relatively high compared to organic concentration. Magnesium ions used in this study were from bittern and commercial magnesium salts of $MgCl_2$ and $Mg(OH)_2$. Bittern obtained as a by-product of seasalt manufacture contains $8,000mg\;Ca^{2+}/L$ and $32,000mg\;Mg^{2+}/L$. Optimum initial pH was 10.5~11.0 and the reaction was complete or done in 2 min. Nitrogen removal efficiency using bittern, $MgCl_2 $ and $Mg(OH)_2$ (as source of $Mg^{2+}$) was 71 %, 81% and 83%. respectively. Phosphate removal efficiency was 99%, 98% and 93%, respectively. Therefore, bittern, $MgCl_2$ and $Mg(OH)_2$ can be efficiently used as $Mg^{2+}$ source for crystallization of nitrogen and phosphate. However, bittern is economically favorable $Mg^{2+}$ source for removing nitrogen and phosphate in wastewater.

  • PDF

A Study on the Electrochemical Properties Fabrication Process of Mg-Ca Sacrificial Anode for the Corrosion Protection of Steel Structures (철 구조물의 부식방지를 위한 Mg-Ca 희생양극의 전기화학적 특성과 제조에 관한 연구)

  • Park, Kang-Geun;Kim, Hye-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.73-80
    • /
    • 2006
  • It is an object of the present paper to investigate a electrochemical properties of Mg-based sacrificial anodes and the effect of calcium added from calcium chloride into magnesium on the melt protection during the melting. Electrochemical data will be correlated with processing control variables, and the microstructural change by the addition of CaCl2. Small addition of calcium into magnesium from CaCl2 imparts beneficial effect in electrochemical properties of Mg alloys, primarily, through microstructural modifications. In addition, the protection effect of the melts surface of Ca with low melting point modification is obtained by adding Ca not more than 0.6%.

  • PDF

Effect of the Salt Concentration in Seafood Wastewater on the High-Rate Anaerobic Digestion (수산물 가공폐수내 염분농도가 고율 혐기성 소화에 미치는 영향)

  • Choi, Yong-Bum;Han, Dong-Joon;Lee, Hae-Seung;Kwon, Jae-Hyouk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.730-736
    • /
    • 2013
  • This study was conducted to examine the effects of the salt concentration in seafood wastewater on the high-rate anaerobic digestion process. In the general high-rate anaerobic process test, the TCODcr removal efficiency at 6 hr or more HRT was 81.1~0.7%, and the optimal HRT for seafood wastewater process was found to be 6 hr or more. The methane content in the biogas was 70.1~76.8% during the operation, and was hardly affected by the change in the influent load. The results of the anaerobic digestion efficiency according to the salt concentration showed that the removal efficiency of TCODcr was 83.4~89.2% below a $4,000mgCl^-/L$ salt concentration, and mid-70% at a $5,000mgCl^-/L$ salt concentration. Therefore, the salt concentration had to be kept below $4,000mgCl^-/L$ to ensure stable treatment efficiency. Below a $3,000mgCl^-/L$ salt concentration, the methane generation was 0.2999~0.346$m^3CH_4/kgCODrem.$, which was similar to the theoretical methane gas generation in STP condition ($0.35m^3CH_4/gTCODrem.$). The methane content in the biogas was 64.7~73.3% below a $3,000mgCl^-/L$ salt concentration, but decreased with an increase in the salt concentration, to 50.1~56.9% at a $4,000mgCl^-/L$ concentration.

Fabrication of CNT/MgCl2-Supported Ti-based Ziegler-Natta Catalysts for Trans-selective Polymerization of Isoprene

  • Cao, Lan;Zhang, Xiaojie;Wang, Xiaolei;Zong, Chengzhong;Kim, Jin Kuk
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.158-167
    • /
    • 2018
  • In this study, in-situ trans-selective polymerization of isoprene was carried out using titanium-based Ziegler-Natta catalysts. The catalysts were prepared by high-energy ball milling. Individually Large-inner-diameter carbon nanotubes (CNTL), and hydroxylated carbon nanotubes (CNTOH), along with magnesium chloride ($MgCl_2$) were used as the carriers for the catalysts. The optimum ball-milling time for preparing the $CNT/MgCl_2/TiCl_4$ Ziegler-Natta catalysts was 4 h. The $CNTOH/MgCl_2/TiCl_4$ catalyst showed a higher efficiency than that of the $CNTL/MgCl_2/TiCl_4$ catalyst, based on the rate of polymerization. The effects of the CNT-filler type on the isoprene polymerization behaviors and polymer properties were investigated. The morphologies of the trans-1,4-polyisoprene (TPI)/CNT and TPI/CNTOH nanocomposites exhibited a tube-like shape, and the CNTL and CNTOH fillers were well dispersed in the TPI matrix. In addition, the thermal stability of TPI significantly increased upon the introduction of a small amount of both CNTL/CNTOH fillers (0.15 wt%), owing to the satisfactory dispersion of the CNTL/CNTOH in the TPI matrix.

Performance of Membrane Capacitive Deionization Process Using Polyvinylidene Fluoride Heterogeneous Ion Exchange Membranes Part II : Performance Study of Membrane Capacitive Deionization Process (폴리비닐플루오라이드 불균질 이온교환막을 이용한 막 결합형 축전식 탈염공정의 탈염성능 Part II : 불균질 이온교환막의 탈염성능)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.240-247
    • /
    • 2017
  • In this study, the heterogeneous ion exchange membranes prepared by the combination of the carbon electrode and mixed the cation and anion exchange polymers and polyvinylidene fluoride as the basic polymer together were made to recognize the efficiency of the salt removal for the application of the membrane capacitive deionization process. The mixing weight ratio of the solvent, basic polymer and ion exchange resin was 7 : 2 : 1 and this mixed solution was directly cast on the electrode. As for the operating conditions of the adsorption voltage and time, feed flow rate, desorption voltage and time of the feed solution NaCl 100 mg/L, the salt removal efficiencies (SRE) were measured. Apart from this NaCl, the $CaCl_2$ and $MgSO_4$ solutions were investigated in terms of SRE as well. Typically, SRE for NaCl 100 mg/L solution under the conditions of adsorption voltage/time, 1.5 V/3 min, desorption voltage/time -0.1 V/3 min, was shown 98%. And for the $CaCl_2$ and $MgSO_4$ solutions, the SREs of 70 and 59% were measured under the conditions of adsorption voltage/time, 1.2 V/3 min, desorption voltage/time -0.5 V/5 min, respectively.

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.