• Title/Summary/Keyword: $MgCl_2\

Search Result 2,275, Processing Time 0.03 seconds

Isolation and Characterization of Feather Keratin-Degrading Bacteria and Plant Growth-Promoting Activity of Feather Hydrolysate (우모 케라틴 분해세균의 분리, 특성 및 우모 분해산물의 식물 생육촉진 효과)

  • Jeong, Jin-Ha;Lee, Na-Ri;Kim, Jeong-Do;Jeon, Young-Dong;Park, Ki-Hyun;Oh, Dong-Joo;Lee, Chung-Yeol;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1307-1314
    • /
    • 2010
  • This study was conducted to isolate and characterize a novel feather-degrading bacterium producing keratinase activity. A strain K9 was isolated from soil at poultry farm and identified as Xanthomonas sp. K9 by phenotypic characters and 16S rRNA gene analysis. The cultural conditions for the keratinase production were 0.3% fructose, 0.1% gelatin, 0.04% $K_2HPO_4$, 0.06% $KH_2PO_4$, 0.05% NaCl and 0.01% $FeSO_4$ with an initial pH 8.0 at $30^{\circ}C$ and 200 rpm. In an optimized medium containing 0.1% chicken feather, production yield of keratinase was approximately 8-fold higher than the yield in basal medium. The strain K9 effectively degraded chicken feather meal (67%) and duck feather (54%), whereas human nail and human hair showed relatively low degradation rates (13-22%). Total free amino acid concentration in the cell-free supernatant was about 25.799 mg/l. Feather hydrolysate produced by the strain K9 stimulated growth of red pepper, indicating Xanthomonas sp. K9 could be not only used to increase the nutritional value of chicken feather but also a potential candidate for the development of natural fertilizer applicable to crop plant soil.

Cu2+ ion reduction in wastewater over RDF-derived char

  • Lee, Hyung Won;Park, Rae-su;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Kim, Sang Chai;Chung, Jin Do;Choi, Won Geun;Park, Young-Kwon
    • Carbon letters
    • /
    • v.18
    • /
    • pp.49-55
    • /
    • 2016
  • Refuse-derived fuel (RDF) produced using municipal solid waste was pyrolyzed to produce RDF char. For the first time, the RDF char was used to remove aqueous copper, a representative heavy metal water pollutant. Activation of the RDF char using steam and KOH treatments was performed to change the specific surface area, pore volume, and the metal cation quantity of the char. N2 sorption, Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and Fourier transform infrared spectroscopy were used to characterize the char. The optimum pH for copper removal was shown to be 5.5, and the steam-treated char displayed the best copper removal capability. Ion exchange between copper ions and alkali/alkaline metal cations was the most important mechanism of copper removal by RDF char, followed by adsorption on functional groups existing on the char surface. The copper adsorption behavior was represented well by a pseudo-second-order kinetics model and the Langmuir isotherm. The maximum copper removal capacity was determined to be 38.17 mg/g, which is larger than those of other low-cost char adsorbents reported previously.

Pharmacokinetic-Pharmacodynamic Modeling for the Relationship between Glucose-Lowering Effect and Plasma Concentration of Metformin in Volunteers

  • Lee, Shin-Hwa;Kwon, Kwang-il
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.806-810
    • /
    • 2004
  • Metformin is a biguanide antihyperglycemic agent often used for the treatment of non-insulin dependent diabetics (NIDDM). In this study, the pharmacokinetics and pharmacodynamics of metformin were investigated in Korean healthy volunteers during a fasting state for over 10 h. In order to evaluate the amount of glucose-lowering effect of metformin, the plasma concentrations of glucose were measured for a period of 10 h followed by the administration of metformin (oral 500 mg) or placebo. In addition, the concentration of metformin in blood samples was determined by HPLC assay for the drug. All volunteers were consumed with 12 g of white sugar 10 minutes after drug intake to maintain initial plasma glucose concentration. The time courses of the plasma concentration of metformin and the glucose-lowering effect were analyzed by nonlinear regression analysis. The estimated $C_{max}$, $T_{max}$, $CL_{t}$/F (apparent clearance), V/F(apparent volume of distribution), and half-life of metformin were 1.42$\{pm}$0.07 $\mu\textrm{g}$/mL, 2.59$\{pm}$0.18h, 66.12$\{pm}$4.6 L/h, 26.63 L, and 1.54 h respectively. Since a significant counterclock-wise hysteresis was found for the metformin concentration in the plasma-effect relationship, indirect response model was used to evaluate pharmacodynamic parameters for metformin. The mean concentration at half-maximum inhibition $IC_{50}$, $k_{in}$, $k_{out}$ were 2.26 $\mu\textrm{g}$/mL, 83.26 $H^{-1}$, and 0.68 $H^{-1}$, respectively. Therefore, the pharmacokinetic-pharmacodynamic model may be useful in the description for the relationship between plasma concentration of metformin and its glucose-lowering effect.

Contrast Effect of Citric Acid and Ethylenediaminetetraacetic Acid on Cadmium Extractability in Arable Soil

  • Lee, Hyun Ho;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.634-640
    • /
    • 2015
  • Chelating agents have been proposed to improve the efficiency of phytoextraction of heavy metal hyperaccumulator. However, little studies to elucidate mechanism of chelating agents to increase cadmium (Cd) extractability have been conducted. The objectives of this study were to evaluate effect of different chelating agents on Cd extractability and to determine mechanism of Cd mobilization affected by these agents. An arable soil was spiked with inorganic Cd ($CdCl_2$) to give a total Cd concentration of $20mgCdkg^{-1}$. Ethylenediaminetetraacetic acid (EDTA) and citric acid (CA) were selected and mixed with the arable soil at the rates of 0 and $5mmolkg^{-1}$. The mixture soils were incubated at $25^{\circ}C$ for 4 weeks in dark condition. Concentration of F1 Cd fractions (water soluble) significantly increased with addition of EDTA but did not changed with addition of CA. Especially; concentration of F5 Cd fractions (residual) significantly increased with addition of CA. Increase in water soluble with EDTA might be attributed to complexation of Cd and EDTA. Dissolved organic carbon concentration significantly increased with EDTA addition, but did not with CA implying that considerable amount of CA was decomposed to inorganic carbon by microorganism. Log activity of carbonate ($CO_3{^{2-}}$) which might be generated from CA increased with addition of CA. Increase in residual Cd fraction might be due to precipitation of Cd as $CdCO_3$. As a result, EDTA was effective in increasing Cd extractability, by contrast CA had significant effect in reducing Cd extractability.

Influence of Sea Water Treatment on Soil Chemical Properties and Contents of Inorganic Elements in Garlic (바닷물 살포가 토양 화학성과 마늘 무기성분 함량에 미치는 영향)

  • Kim, Myung-Sook;Lee, Sang-Bum;Kim, Yoo-Hak;Kang, Seong-Soo;Hyun, Byung-Keun;Gong, Hyo-Young;Ha, Sang-Keon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1295-1299
    • /
    • 2011
  • This study was conducted at the organic farming fields which garlics were planted. The treatments were as follows; water of $3,850L\;ha^{-1}$ (Control), plots applied 1 time, 2 times and 3 times with sea water of $3,850L\;ha^{-1}$. In 3 times sea water treatment plot, the level of EC, Exch. Na and $Cl^-$ were 1.1, 2.1, and 3.3 times higher than control plot, respectively. Due to seawater application, the contents of inorganic elements such as T-N, Ca, Mg, Na, Fe, Mn, and Zn in garlic were generally lower than Control, but not significant.

A study on corrosion resistance and surface properties of AZ31 alloy according to Ca-GP addition during PEO treatment (PEO 처리시 Ca-GP첨가에 따른 AZ31합금의 내식성 및 표면특성에 관한 연구)

  • Lee, Jun-Su;Park, Je-Shin;Park, Il-Song
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.238-247
    • /
    • 2021
  • PEO (plasma electrolytic oxidation) was applied to modify the surface of AZ31 magnesium alloy in this study. The mixed solution of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) was used as the electrolyte, and 0 - 0.05 g/L of Ca-GP (Glycerol Phosphate Calcium salt) was added in the electrolyte as an additive. PEO treatment was conducted at a current density of 30mA/cm2 for 5 minutes using a DC power supply. The surface properties were identified by SEM, XRD and surface roughness analyses, and the corrosion resistance was evaluated by potentiodynamic polarization and immersion tests. In addition, the biocompatibility was evaluated by immersion test in SBF solution. As the concentration of Ca-GP was increased, the surface morphology was denser and more uniform, and the amount of Ca and the thickness of oxide layer increased. Only Mg peak was observed in XRD analysis due to very thin oxide layer. The corrosion resistance of PEO-treated samples increased with the concentration of Ca-GP in comparision with the untreated sample. In particular, the highest corrosion resistance was identified at the group of 0.04g Ca-GP through potentiodynamic polarization and immersion tests in saline solution (0.9 wt.%NaCl). During the immersion in saline solution, pH rapidly increased at the beginning of immersion period due to rapid corrosion, and then increase rate of pH decreased. However, the pH value in the SBF temporarily increased from 7.4 to 8.5 during the day, then decreased due to the inhibition of corrosion with HA(hydroxyapatite) formation.

Evaluation of Physico-Chemical Characteristics of Commercial Tofu Products in Korea Market (주요 시판 두부의 물리화학적 특성 평가)

  • Eun-Yeong, Sim;Hong-Sik, Kim;Mijung, Kim;Hye Young, Park;Hye-Sun, Choi
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.6
    • /
    • pp.521-530
    • /
    • 2022
  • This study was conducted to compare the quality characteristics of commercial tofu products from the market in Korea. Seventeen types of commercial tofu samples were taken and their physicochemical properties, including soluble solid contents, salinity, pH, total acidity and moisture (total solid contents), were analyzed. The hardness of tofu was negatively correlated with the moisture contents of tofu (r=-0.667**). The commercial tofu showed pH 5.80~6.24, total acidity of 0.016~0.034%, soluble solids of 1.50~3.45°Brix, salinity of 1.20~2.30%, and moisture content of 79.91~87.57%, respectively. All 17 tofu samples sold in the Korean market were prepared using crude MgCl2 and sea water as a coagulant. The quality characteristics vary depending on the constituent's of soybeans, and the ratio and amount of coagulants of tofu used. The origin of soybean seeds affected the yellowness of tofu; tofu made from imported soybean showed a higher b value than domestic soybean. These results are expected to be useful for understanding trends in the domestic tofu industry.

Thermally-activated Mactra veneriformis shells for phosphate removal in aqueous solution

  • Yeon-Jin, Lee;Jae-In, Lee;Chang-Gu, Lee;Seong-Jik, Park
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This study explored the feasibility of calcium-rich food waste, Mactra veneriformis shells (MVS), as an adsorbent for phosphate removal, and its removal efficiency was enhanced by the thermal activation process. The CaCO3 in MVS was converted to CaO by thermal activation (>800 ℃), which is more favorable for adsorbing phosphate. Thermal activation did not noticeably influence the specific surface area of MVS. The MVS thermally activated at 800 ℃ (MVS-800), showed the highest phosphate adsorption capacity, was used for further adsorption experiments, including kinetics, equilibrium isotherms, and thermodynamic adsorption. The effects of environmental factors, including pH, competing anions, and adsorbent dosage, were also studied. Phosphate adsorption by MVS-800 reached equilibrium within 48h, and the kinetic adsorption data were well explained by the pseudo-first-order model. The Langmuir model was a better fit for phosphate adsorption by MVS-800 than the Freundlich model, and the maximum adsorption capacity of MVS-800 obtained via the Langmuir model was 188.86 mg/g. Phosphate adsorption is an endothermic and involuntary process. As the pH increased, the phosphate adsorption decreased, and a sharp decrease was observed between pH 7 and 9. The presence of anions had a negative impact on phosphate removal, and their impact followed the decreasing order CO32- > SO42- > NO3- > Cl-. The increase in adsorbent dosage increased phosphate removal percentage, and 6.67 g/L of MVS-800 dose achieved 99.9% of phosphate removal. It can be concluded that the thermally treated MVS-800 can be used as an effective adsorbent for removing phosphate.

Effect of Vermiculite Addition on Composting of Compostable Household Wastes in a Small Bin (가정용 소형 발효용기에 의한 음식물쓰레기 퇴비화과정 중 질석의 첨가효과)

  • Seo, Jeoung-Yoon;Heo, Jong-Soo;Han, Jong-phil;Park, Ju-Won;Hwang, Myun-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.131-140
    • /
    • 2000
  • Compostable household wastes(mainly food residues) were composted in a small bin for 30 days, in which compostable household wastes were fed every day and mixed thoroughly under aerobic conditions. Three small bins were employed. In the first bin only recycled compost was composted, in the second, compostable household wastes with recycled compost, and in the third compostable household wastes with recycled compost and vermiculture. The correct decomposition rate of each composting material was calculated during composting. Total reduced rate of the weight after 30 days was 57.32% when composting the compostable household wastes with recycled compost, and 64.71% when composting them with recycled compost and vermiculite. In the case of composting the compostable household wastes with the recycled compost, the total weight reduction rate for a day was 6.81% and the total decomposition rate 6.81%. Their difference was not great. But in the case calculated with only compostable household wastes the total weight reduction rate was 56.34% and the decomposition 6.79%. When compostable household wastes were composted with the recycled compost and vermiculite, the total weight reduction rate was 64.99% and the decomposition rate 1.48%, but the total weight reduction 4.36% and the decomposition rate 35.46% when calculated with only compostable household wastes. MgO, $K_2O$ and Cr concentrations in the composting mixture during the early composting time were higher when composted with vermiculite than without it, but organic matter, CaO, NaCl, and $P_2O_5$ concentrations were contrarily diluted because of their lower concentration of vermiculite when compostable household wastes were composted with vermiculite.

  • PDF

Evaluation of mineral, heavy metal and phthalate contents in mudflat solar salt and foreign salt (국내산 갯벌천일염과 외국산 소금의 미네랄, 중금속 및 phthalate 함량 평가)

  • Kim, Hag-Lyeol;Lee, In-Seon;Kim, In-Cheol
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.520-528
    • /
    • 2014
  • The purpose of this study was to evaluated a phthalate, heavy metal contents and physicochemical quality properties in korean mudflat solar salt and foreign salts. DEHP in mudflat solar salt (MSS) was detected a low level (9.00~669.89 ppb), but it was shown a high level excess to 1.5 ppm criteria in the foreign solar salt (FSS) 5 type (3,440.64, 3,266.56, 2,189.65, 4,010.69, 4,554.20 ppb) and foreign large solar salt (FLSS) 1 type (1,983.27 ppb). Also, DEHP in FSS 2 type (930.15, 1,310.07 ppb) and FLSS 1 type (924.92 ppb) was detected a high level not excess to criteria. No detected DMP, DEP, DIBP, DBP, DAP, BBP, DCHP and DEHA contents in MSS and foreign salt (FS). Na ion was shown a significantly higher level (p<0.05) in FS (407,345.87~426,612.14 ppm) than in MSS (363,633.98 ppm), but it was shown a high level in Mg (p<0.01), K (p<0.05), Ca ion (p<0.05) of FSS compared to foreign refined salt (FRS). Cl ion (532,727.07 ppm) of MSS was the most low level (p<0.001) compared to FS, but it was shown a high level (p<0.001) in Br ion (625.07 ppm). $SO_4$ ion was not shown a significant difference in DS and FS. It was display a high level in Mn of MSS, and Al, Fe of FLSS. Heavy metal contents (As, Cd, Pb and Hg) in MSS and FS was not significant difference, it was safety level as edible salt.