• Title/Summary/Keyword: $M_2C$ carbide

Search Result 239, Processing Time 0.022 seconds

Preparation of WC Powders by SHS Process in the Presence of Alkali Salts (자전연소합성법에서의 알칼리염을 이용한 WC 분말의 제조)

  • Won, Hyung-Il;Nersisyan, Hayk;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.152-156
    • /
    • 2007
  • Tungsten carbide powder was synthesized by SHS (self-propagating high-temperature synthesis). Except $WO_{3}$, each concentration of raw material ($WO_{3},\;Mg,\;NaCl,\;Na_{2}CO_{3},\;C$) was investigated. Final product was characterized by XRD and SEM. X-ray data demonstrated that the $NaCl+Na_{2}CO_{3}$ combined mixture has superiority in the WC formation process. Single phase and submicrometer WC powder was synthesized at the temperature below $1600^{\circ}C$. The role of sodium salts in combustion process was discussed, and chemical mechanism of WC formation was proposed. WC powder prepared by salt-assisted combustion synthesis has a size $0.2{\sim}3\;{\mu}m$ and low agglomeration degree.

4H-SiC MESFET Large Signal Modeling using Modified Materka Model (Modified Materka Model를 이용한 4H-SiC MESFET 대신호 모델링)

  • 이수웅;송남진;범진욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.890-898
    • /
    • 2001
  • 4H-SiC(silicon carbide) MESFET large signal model was studied using modified Materka-Kacprzak large signal MESFET model. 4H-SiC MESFET device simulation have been conducted by Silvaco\`s 2D device simulator, ATLAS. The result is modeled using modified Materka large signal model. simulation and modeling results are -8 V pinch off voltage, under V$\_$GS/=0 V, V$\_$DS/=25 V conditions, I$\_$DSS/=270 mA/mm, G$\_$m/=52.8 ms/mm were obtained. Through the power simulation 2 GHz, at the bias of V$\_$GS/-4 V md V$\_$DS/=25 V, 10 dB Gain, 34 dBm (1dB compression point)output porter, 7.6 W/mm power density, 37% PAE(power added efficiency) were obtained.7.6 W/mm power density, 37% PAE(power added efficiency) were obtained.d.

  • PDF

Tribological Properties of Hot Pressed $SiC/Si_3N_4$ Composites (가압소결 $SiC/Si_3N_4$ 복합체의 마찰마모특성)

  • Baik, Yong-Hyuck;Choi, Woong;Park, Yong-Kap
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1102-1107
    • /
    • 1999
  • SiC-Si3N4 composites were prepared by mixing $\alpha$-Si3N4 powder to $\alpha$-SiC powder in the range of 10 to 30 vol% with 10vol% interval. 6wg% Al2O3 and 6wt% Y2O3 were respectively added as sintering aids. Hot pressing was performed at 1,80$0^{\circ}C$ for 1 hour with 25 MPa pressure. In the case of adding 20vol% of $\alpha$-Si3N4 powder the relative density to theoretical value and the flexural strength were 99.1% and 34,420 MPa respectively and the worn amount was 2.09$\times$10-3 mm2 which were the highest values in the all range of he composition. Although the composite containig 10 vol% of $\alpha$-Si3N4 powder showed the highest fracture toughness(KIC) of 4.65MN/m3/2 the reduction of the wear resistance in this composite is likely to be affected by the homogeneity and the uniformity of the grain coalescence and growth during the sintering process.

  • PDF

Effect of Additive Composition on Fracture Toughness of In Situ-Toughened SiC−Si3N4 Composites

  • Lee, Young-Il;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.189-193
    • /
    • 2007
  • Effect of additive composition on fracture toughness of in situ-toughened $SiC-Si_3N_4$ composites was investigated for five different additive compositions. The highest toughness $(6.4MPa{\cdot}m^{1/2})\;in\;SiC-Si_3N_4$ composites investigated herein was obtained when an Y-Mg-Si-Al-O-N oxynitride glass was used as a sintering additive. The improvement in fracture toughness was produced by enhanced bridging and deflection by $Si_3N_4$ grains.

Fabrications and Analysis of Schottky Diode of Silicon Carbide Substrate with novel Junction Electric Field Limited Ring (새로운 전계 제한테 구조를 갖는 탄화규소 기판의 쇼트키 다이오드의 제작과 특성 분석)

  • Cheong Hui-Jong;Han Dae-Hyun;Lee Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1281-1286
    • /
    • 2006
  • We have used the silicon-carbide(4H-SiC) instead of conventional silicon materials to develope of the planar junction barrier schottky rectifier for ultra high breakdown voltage(1,200 V grade). The substrate size is 2 inch wafer, Its concentration is $3*10^{18}/cm^{3}$ of $n^{+}-$type, thickness of epitaxial layer $12{\mu}m$ conentration is $5*10^{15}cm^{-3}$ of n-type. The fabticated devices are junction barrier schottky rectifier, The guard ring for improvement of breakdown voltage is designed by the box-like impurity of boron, the width and space of guard ring was designed by variation. The contact metals to rectify were used by the $Ni(3,000\:{\AA})/Au(2,000\:{\AA})$. As a results, the on-state voltage is 1.26 V, on-state resistance is $45m{\Omega}/cm^{3}$, maximum value of improved reverse breakdown voltage is 1180V, reverse leakage current density is $2.26*10^{-5}A/CM^{3}$. We had improved the measureme nt results of the electrical parameters.

A study on the Grindability of Fine Ceramics by Experimental Method (실험적 방법에 의한 파인세라믹스의 연삭성에 관한 연구)

  • Kim, Seong-Kyeum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.35-42
    • /
    • 2011
  • This paper describes the characteristics of high speed grinding and the influence of wheel surface speed V and a grindability of the grinding materials. The various fine ceramics pieces was ground by metal and vitrified bonded diamond wheel. The surface roughness of fine ceramics(Zirconia($ZrO_2$), Silicon Carbide(SiC), Silicon Nitride($Si_3N_4$), Alumina($Al_2O_3$)) decreases from $0.05{\mu}m(R_{max})$ to $0.025{\mu}m(R_{max})$ when the wheel speed at grinding point increases the wheel speed. Relation between the temperature at grinding point and surface roughness was linear. Abrasive jet machining(AJM), a specialized from of shot blasting, is considered one of the most helpful micro machining methods for hard and brittle materials such as glasses and ceramics by constant pressure grinding.

A Study on High Voltage SiC-IGBT Device Miniaturization (고내압 SiC-IGBT 소자 소형화에 관한 연구)

  • Kim, Sung-Su;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.785-789
    • /
    • 2013
  • Silicon Carbide (SiC) is the material with the wide band-gap (3.26 eV), high critical electric field (~2.3 MV/cm), and high bulk electron mobility (~900 $cm^2/Vs$). These electronic properties allow attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation compared to Si devices. In general, device design has a significant effect on the switching and electrical characteristics. It is known that in this paper, we demonstrated that the switching performance and breakdown voltage of IGBT is dependent with doping concentration of p-base region and drift layer by using 2-D simulations. As a result, electrical characteristics of SiC-IGBT deivce is higher breakdown voltage ($V_B$= 1,600 V), lower on-resistance ($R_{on}$= 0.43 $m{\Omega}{\cdot}cm^2$) than Si-IGBT. Also, we determined that processing time and cost is reduced by the depth of n-drift region of IGBT was reduced.

Effect of Deposition Temperature on the Property of Pyrolytic SiC Fabricated by the FBCVD Method (유동층 화학기상증착법을 이용하여 제조된 열분해 탄화규소의 특성에 미치는 증착온도의 영향)

  • Kim, Yeon-Ku;Kim, Weon-Ju;Yeo, SungHwan;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.434-440
    • /
    • 2014
  • Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at $1500-1650^{\circ}C$ has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at $1500^{\circ}C$ obtains nearly stoichiometric composition, the composition of the SiC layer coated at $1300-1400^{\circ}C$ shows discrepancy from stoichiometric ratio(1:1). $3-7{\mu}m$ grain size of SiC layer coated at $1500^{\circ}C$ is decreased to sub-micrometer (< $1{\mu}m$) $-2{\mu}m$ grain size when coated at $1400^{\circ}C$, and further decreased to nano grain size when coated at $1300-1350^{\circ}C$. Moreover, the high density of SiC layer (${\geq}3.19g/cm^3$) which is easily obtained at $1500^{\circ}C$ coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.

Effect of Sintering Temperature on the Grain Size and Mechanical Properties of Al2O3-SiC Nanocomposites

  • Moradkhani, Alireza;Baharvandi, Hamidreza;Naserifar, Ali
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.256-268
    • /
    • 2019
  • In this research, some mechanical properties of Al2O3-based composites containing nanoSiC and nanoMgO additives, including elasticity modulus, hardness, and fracture toughness, have been evaluated. Micron-sized Al2O3 powders containing 0.08 wt.% nanoMgO particles have been mixed with different volume fractions of nanoSiC particles (2.5 to 15 vol.%). Untreated samples have been sintered by using hot-press technique at temperatures of 1600 to 1750℃. The results show significant increases in the mechanical characteristics with increases in the sintering temperature and amount of nanoSiC particles, with the result that the elasticity modulus, hardness, and fracture toughness were obtained as 426 GPa, 21 GPa, and 4.5 MPa.m1/2, respectively.

Properties of Al2O3-SiCw Composites Fabricated by Three Preparation Methods (제조방법에 따른 Al2O3-SiCw 복합체의 특성)

  • Lee, Dae-Yeop;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • $Al_2O_3$-SiC composites reinforced with SiC whisker ($SiC_w$) were fabricated using three different methods. In the first, $Al_2O_3-SiC_w$ starting materials were used. In the second, $Al_2O_3-SiC_w$-SiC particles ($SiC_p$) were used, which was intended to enhance the mechanical properties by $SiC_p$ reinforcement. In the third method, reaction-sintering was used with mullite-Al-C-$SiC_w$ starting materials. After hot-pressing at $1750^{\circ}C$ and 30 MPa for 1 h, the composites fabricated using $Al_2O_3-SiC_w$ and $Al_2O_3-SiC_w-SiC_p$ showed strong mechanical properties, by which the effects of reinforcement by $SiC_w$ and $SiC_p$ were confirmed. On the other hand, the mechanical properties of the composite fabricated by reaction-sintering were found to be inferior to those of the other $Al_2O_3$-SiC composites owing to its relatively lower density and the presence of ${\gamma}-Al_2O_3$ and ${\gamma}-Al_{2.67}O_4$. The greatest hardness and $K_{1C}$ were 20.37 GPa for the composite fabricated using $Al_2O_3-SiC_w$, and $4.9MPa{\cdot}m^{1/2}$ using $Al_2O_3-SiC_w-SiC_p$, respectively, which were much improved over those from the monolithic $Al_2O_3$.