DOI QR코드

DOI QR Code

Effect of Sintering Temperature on the Grain Size and Mechanical Properties of Al2O3-SiC Nanocomposites

  • Moradkhani, Alireza (Art & Architecture Faculty, Yadegar-e Imam Khomeini (RAH) Shahre-Rey Branch, Islamic Azad University) ;
  • Baharvandi, Hamidreza (Faculty of Materials & Manufacturing Processes, Malek-Ashtar University of Technology) ;
  • Naserifar, Ali (Art & Architecture Faculty, Yadegar-e Imam Khomeini (RAH) Shahre-Rey Branch, Islamic Azad University)
  • Received : 2018.08.14
  • Accepted : 2018.10.10
  • Published : 2019.05.31

Abstract

In this research, some mechanical properties of Al2O3-based composites containing nanoSiC and nanoMgO additives, including elasticity modulus, hardness, and fracture toughness, have been evaluated. Micron-sized Al2O3 powders containing 0.08 wt.% nanoMgO particles have been mixed with different volume fractions of nanoSiC particles (2.5 to 15 vol.%). Untreated samples have been sintered by using hot-press technique at temperatures of 1600 to 1750℃. The results show significant increases in the mechanical characteristics with increases in the sintering temperature and amount of nanoSiC particles, with the result that the elasticity modulus, hardness, and fracture toughness were obtained as 426 GPa, 21 GPa, and 4.5 MPa.m1/2, respectively.

Keywords

References

  1. D. W. Richerson, Modern Ceramic Engineering; 2nd Edition, Marcel Dekker Inc., NewYork Basel; 1992.
  2. C. A. Harper, Handbook of Materials for Product Materials for Product Design; 3rd Edition, McGraw-Hill, London, 2001.
  3. S. Somiya, Handbook of Advanced Ceramics; Elsevier Academic Press, Oxford, 2003.
  4. C. Kalkandelen, M. Suleymanoglu, S. E. Kuruca, A. Akan, F. N. Oktar, and O. Gunduz, "Part 2: Biocompatibility Evaluation of Hydroxyapatite-based Clinoptilolite and $Al_2O_3$ Composites," J. Aust. Ceram Soc., 53 [1] 217-23 (2017). https://doi.org/10.1007/s41779-017-0027-9
  5. C. H. Huang and Y. Chen, "Effect of Mechanical Properties on the Ballistic Resistance Capability of $Al_2O_3-ZrO_2$ Functionally Graded Materials," Ceram. Int., 42 [11] 12946-55 (2016). https://doi.org/10.1016/j.ceramint.2016.05.067
  6. Z. Aslanoglu and A. Sesver, "The Postmortem Study of Used Refractory Brick in EAF Dust Recovery Kiln," J. Aust. Ceram Soc., 53 [2] 933-38 (2017). https://doi.org/10.1007/s41779-017-0109-8
  7. S. N. Monteiro, L. H. L. Louro, A. V. Gomes, C. F. M. Chagas, A. B. Caldeira, and E. P. Lima, "How Effective is a Convex $Al_2O_3-Nb_2O_5$ Ceramic Armor," Ceram. Int., 42 [6] 7844-47 (2016). https://doi.org/10.1016/j.ceramint.2015.12.147
  8. H. Setiawan, R. Khairani, M. A. Rahman, R. Septawendar, R. R. Mukti, H. K. Dipojono, and B. S. Purwasasmita, "Synthesis of Zeolite and ${\gamma}$-Alumina Nanoparticles as Ceramic Membranes for Desalination Applications," J. Aust. Ceram Soc., 53 [2] 531-38 (2017). https://doi.org/10.1007/s41779-017-0064-4
  9. N. J. Welham and N. Setoudeh, "Formation of an Alumina-Silicon Carbide Nanocomposite," J. Mater. Sci., 40 [12] 3271-73 (2005). https://doi.org/10.1007/s10853-005-2699-8
  10. H. Z. Wang, L. Gao, and J. K. Guo, "The Effect of Nanoscale SiC Particles on the Microstructure of $Al_2O_3$ Ceramics," Ceram. Int., 26 [4] 391-96 (2000). https://doi.org/10.1016/S0272-8842(99)00069-3
  11. A. Gadalla, M. Elmasry, and P. Kongkachuichay, "High Temperature Reactions within SiC-$Al_2O_3$ Composites," J. Mater. Res., 7 [9] 2585-92 (1992). https://doi.org/10.1557/JMR.1992.2585
  12. M. Parchoviansky, J. Balko, P. Svancarek, J. Sedlacek, J. Dusza, F. Lofaj, and D. Galusek, "Mechanical Properties and Sliding Wear Behaviour of $Al_2O_3$-SiC Nanocomposites with 3-20 vol% SiC," J. Eur. Ceram Soc., 37 [14] 4297-306 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.051
  13. C. Greskovich, and B. J. Anthony, "Solubility of Magnesia in Polycrystalline Alumina at High Temperatures," J. Am. Ceram. Soc., 84 [2] 420-25 (2004). https://doi.org/10.1111/j.1151-2916.2001.tb00671.x
  14. R. S. Mishra and A. K. Mukherjee, "Processing of High Hardness-High Toughness Alumina Matrix Nanocomposites," Mater. Sci. Eng. A, 301 [1] 97-101 (2001). https://doi.org/10.1016/s0921-5093(00)01381-2
  15. R. D. Bagley and D. L. Johnson, "Effect of Magnesia on Grain Growth in Alumina," Adv. Ceram., 10 666-78 (1984).
  16. C. A. Duan, "Effects of Chemical in Homogeneities on Grain Growth and Microstructure in $Al_2O_3$," J. Am. Ceram. Soc., 72 [1] 130-36 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb05965.x
  17. J. Wang, S. Y. Lim, S. C. Ng, C. H. Chew, and L. M. Gan, "Dramatic Effect of a Small Amount of MgO Addition on the Sintering of $Al_2O_3$-5 vol% SiC Nanocomposite," Mater. Lett., 33 [5-6] 273-77 (1998). https://doi.org/10.1016/S0167-577X(97)00121-3
  18. M. Ahmadzadeh, H. Baharvandi, H. Abdizadeh, and A. M. Hadian, "Synthesis of Nano-Size MgO Powder by Chemical Deposition of Low Cost Raw Materials," Int. J. Mod. Phys. B, 22 [18] 3185-92 (2008). https://doi.org/10.1142/S0217979208048097
  19. ASTM B311-93, Test Method for Density Determination for Powder Metallurgy (P/M) Materials Containing Less Than Two Percent Porosity. Developed by Subcommittee: B09.11, Book of Standards: 02(05); 2002.
  20. D. Galusek, J. Sedlacek, P. Svancarek, R. Riedel, R. Satet, and M. Hoffmann, "The Influence of Post-Sintering HIP on the Microstructure, Hardness, and Indentation Fracture Toughness of Polymer-Derived $Al_2O_3$-SiC Nanocomposites," J. Eur. Ceram. Soc., 27 [2-3] 1237-45 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.028
  21. S. Sinhamahapatra, M. Shamim, H. S. Tripathi, A. Ghosh, and K. Dana, "Kinetic Modeling of Solid State Magnesium Aluminum at Espinel Formation and its Validation," Ceram. Int., 42 [7] 9204-13 (2016). https://doi.org/10.1016/j.ceramint.2016.03.017
  22. ASTM C1161-02c, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature. Developed by Subcommittee: C28.01, Book of Standards: 15(01); 2008.
  23. ASTM C769-98, "Standard Test Method for Sonic Velocity in Manufactured Carbon and Graphite Materials for Use in Obtaining an Approximate Young's Modulus", Developed by Subcommittee: D02.F0, Book of Standards: 05(05); 2005.
  24. ASTM C1327-08, Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics", Developed by Subcommittee: C28.01, Book of Standards: 15(01); 2008.
  25. A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, "Determination of Fracture Toughness Using the Areas of Microcrack Tracks Left in Brittle Materials by Vickers Indentation Test," J. Adv. Ceram., 2 [1] 87-102 (2013). https://doi.org/10.1007/s40145-013-0047-z
  26. K. A. Nihhara, R. Morena, and D. P. H. Hasselman, "Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios," J. Mater. Sci. Lett., 1 [1] 13-6 (1982). https://doi.org/10.1007/BF00724706
  27. D. K. Shetty, I. G. Wright, P. N. Mincer, and A. H. Cluar, "Indentation Fracture of WC-Co Cermets," J. Mater. Sci., 20 [5] 1873-82 (1985). https://doi.org/10.1007/BF00555296
  28. R. Gao, H. Wang, Q. Zhu, Q. Yang, X. Sun, B. Li, S. Xu, and X. Zhang, "The Forming Region and Mechanical Properties of $SiO_2-Al_2O_3$-MgO Glasses," J. Non-Cryst. Solids, 470 132-37 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.004
  29. R. Mohammad-Rahimi, H. R. Rezaie, and A. Nemati, "Sintering of $Al_2O_3$-SiC Composite from Sol-Gel Method with MgO, $TiO_2$ and $Y_2O_3$ Addition," Ceram. Int., 37 [5] 1681-88 (2011). https://doi.org/10.1016/j.ceramint.2011.01.035
  30. A. R. Yazdi, H. Baharvandi, H. Abdizadeh, J. Purasad, A. Fathi, and H. Ahmadi, "Effect of Sintering Temperature and Siliconcarbide Fraction on Density, Mechanical Properties and Fracture mode of Alumina-Silicon Carbide Micro/Nanocomposites," Mater. Des., 37 251-55 (2012). https://doi.org/10.1016/j.matdes.2011.12.038
  31. C. C. Anya and S. G. Roberts, "Pressureless Sintering and Elastic Constants of $Al_2O_3$-SiC Nanocomposites," J. Eur. Ceram. Soc., 17 [4] 565-73 (1997). https://doi.org/10.1016/S0955-2219(96)00092-1
  32. E. Medvedovski, "Alumina-Mullite Ceramics for Structural Applications," Ceram. Int., 32 [4] 369-75 (2006). https://doi.org/10.1016/j.ceramint.2005.04.001
  33. A. Moradkhani and H. Baharvandi, "Microstructural Analysis of Fracture Surfaces and Determination of Mechanical Properties of $Al_2O_3$-SiC-MgO Nanocomposites," Int. J. Refract. Met. Hard Mater., 67 40-55 (2017). https://doi.org/10.1016/j.ijrmhm.2017.05.004
  34. M. Sternitzke, "Review: Structural Ceramic Nanocomposites," J. Eur. Ceram. Soc., 17 [9] 1061-82 (1997). https://doi.org/10.1016/S0955-2219(96)00222-1
  35. L. Xuefei, L. Hanlian, H. Chuanzhen, Z. Bin, and Z. Longwei, "High Temperature Mechanical Properties of $Al_2O_3$-based Ceramic Tool Material Toughened by SiC Whiskers and Nanoparticles," Ceram. Int., 43 [1] 1160-65 (2017). https://doi.org/10.1016/j.ceramint.2016.10.057
  36. J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook; 3rd Edition, CRC Press, Florida, 2001.
  37. A. Moradkhani, H. Baharvandi, and M. M. M. Samani, "Mechanical Properties and Microstructure of B4C-Nano-$TiB_2$-Fe/Ni Composites under Different Sintering Temperatures," Mater. Sci. Eng. A, 665 141-53 (2016). https://doi.org/10.1016/j.msea.2016.04.034
  38. A. Moradkhani and H. Baharvandi, "Analyzing the Microstructures of W-ZrC Composites Fabricated through Reaction Sintering and Determining their Fracture Toughness Values by Using the SENB and VIF Methods," Eng. Fract. Mech., 189 501-13 (2018). https://doi.org/10.1016/j.engfracmech.2017.11.038
  39. A. Moradkhani and H. Baharvandi, "Effects of Additive Amount, Testing Method, Fabrication Process and Sintering Temperature on the Mechanical Properties of $Al_2O_3$/3Y-TZP Composites," Eng. Fract. Mech., 191 446-60 (2017). https://doi.org/10.1016/j.engfracmech.2017.12.033
  40. A. Moradkhani, H. Baharvandi, and A. Naserifar, "Fracture Toughness of 3Y-TZP Dental Ceramics by Using Vickers Indentation Fracture and SELNB Methods," J. Korean Ceram. Soc., 56 [1] 37-48 (2019). https://doi.org/10.4191/kcers.2019.56.1.01
  41. B. K. Jang, M. Enoki, T. Kishi, H. K. Oh, "Effect of Second Phase on Mechanical Properties and Toughening of $Al_2O_3$ based Ceramic Composites," Comps. Eng., 5 [10-11] 1275-86 (1995). https://doi.org/10.1016/0961-9526(95)00069-Y
  42. J. Zhao, L. C. Stearns, M. P. Harmer, H. M. Chan, G. A. Miller, and R. F. Cook, "Mechanical Behavior of Alumina-Silicon Carbide Nanocomposites," J. Am. Ceram. Soc., 76 [2] 503-10 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03814.x
  43. T. Ohji, Y. K. Jeong, Y. H. Choa, and K. Niihara, "Strengthening and Toughening Mechanisms of Ceramic Nanocomposites," J. Am. Ceram. Soc., 81 [6] 1453-60 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02503.x
  44. I. Levin, W. D. Kaplan, D. G. Brandon, and A. A. Layyous, "Effect of SiC Submicrometer Particle Size and Content on Fracture Toughness of Alumina-SiC Nanocomposites," J. Am. Ceram. Soc., 78 [1] 254-56 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08397.x

Cited by

  1. Reactive, nonreactive, and flash spark plasma sintering of Al 2 O 3 /SiC composites-A comparative study vol.103, pp.1, 2020, https://doi.org/10.1111/jace.16734
  2. 3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production vol.58, pp.6, 2019, https://doi.org/10.1007/s43207-021-00142-4