References
- D. W. Richerson, Modern Ceramic Engineering; 2nd Edition, Marcel Dekker Inc., NewYork Basel; 1992.
- C. A. Harper, Handbook of Materials for Product Materials for Product Design; 3rd Edition, McGraw-Hill, London, 2001.
- S. Somiya, Handbook of Advanced Ceramics; Elsevier Academic Press, Oxford, 2003.
-
C. Kalkandelen, M. Suleymanoglu, S. E. Kuruca, A. Akan, F. N. Oktar, and O. Gunduz, "Part 2: Biocompatibility Evaluation of Hydroxyapatite-based Clinoptilolite and
$Al_2O_3$ Composites," J. Aust. Ceram Soc., 53 [1] 217-23 (2017). https://doi.org/10.1007/s41779-017-0027-9 -
C. H. Huang and Y. Chen, "Effect of Mechanical Properties on the Ballistic Resistance Capability of
$Al_2O_3-ZrO_2$ Functionally Graded Materials," Ceram. Int., 42 [11] 12946-55 (2016). https://doi.org/10.1016/j.ceramint.2016.05.067 - Z. Aslanoglu and A. Sesver, "The Postmortem Study of Used Refractory Brick in EAF Dust Recovery Kiln," J. Aust. Ceram Soc., 53 [2] 933-38 (2017). https://doi.org/10.1007/s41779-017-0109-8
-
S. N. Monteiro, L. H. L. Louro, A. V. Gomes, C. F. M. Chagas, A. B. Caldeira, and E. P. Lima, "How Effective is a Convex
$Al_2O_3-Nb_2O_5$ Ceramic Armor," Ceram. Int., 42 [6] 7844-47 (2016). https://doi.org/10.1016/j.ceramint.2015.12.147 -
H. Setiawan, R. Khairani, M. A. Rahman, R. Septawendar, R. R. Mukti, H. K. Dipojono, and B. S. Purwasasmita, "Synthesis of Zeolite and
${\gamma}$ -Alumina Nanoparticles as Ceramic Membranes for Desalination Applications," J. Aust. Ceram Soc., 53 [2] 531-38 (2017). https://doi.org/10.1007/s41779-017-0064-4 - N. J. Welham and N. Setoudeh, "Formation of an Alumina-Silicon Carbide Nanocomposite," J. Mater. Sci., 40 [12] 3271-73 (2005). https://doi.org/10.1007/s10853-005-2699-8
-
H. Z. Wang, L. Gao, and J. K. Guo, "The Effect of Nanoscale SiC Particles on the Microstructure of
$Al_2O_3$ Ceramics," Ceram. Int., 26 [4] 391-96 (2000). https://doi.org/10.1016/S0272-8842(99)00069-3 -
A. Gadalla, M. Elmasry, and P. Kongkachuichay, "High Temperature Reactions within SiC-
$Al_2O_3$ Composites," J. Mater. Res., 7 [9] 2585-92 (1992). https://doi.org/10.1557/JMR.1992.2585 -
M. Parchoviansky, J. Balko, P. Svancarek, J. Sedlacek, J. Dusza, F. Lofaj, and D. Galusek, "Mechanical Properties and Sliding Wear Behaviour of
$Al_2O_3$ -SiC Nanocomposites with 3-20 vol% SiC," J. Eur. Ceram Soc., 37 [14] 4297-306 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.051 - C. Greskovich, and B. J. Anthony, "Solubility of Magnesia in Polycrystalline Alumina at High Temperatures," J. Am. Ceram. Soc., 84 [2] 420-25 (2004). https://doi.org/10.1111/j.1151-2916.2001.tb00671.x
- R. S. Mishra and A. K. Mukherjee, "Processing of High Hardness-High Toughness Alumina Matrix Nanocomposites," Mater. Sci. Eng. A, 301 [1] 97-101 (2001). https://doi.org/10.1016/s0921-5093(00)01381-2
- R. D. Bagley and D. L. Johnson, "Effect of Magnesia on Grain Growth in Alumina," Adv. Ceram., 10 666-78 (1984).
-
C. A. Duan, "Effects of Chemical in Homogeneities on Grain Growth and Microstructure in
$Al_2O_3$ ," J. Am. Ceram. Soc., 72 [1] 130-36 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb05965.x -
J. Wang, S. Y. Lim, S. C. Ng, C. H. Chew, and L. M. Gan, "Dramatic Effect of a Small Amount of MgO Addition on the Sintering of
$Al_2O_3$ -5 vol% SiC Nanocomposite," Mater. Lett., 33 [5-6] 273-77 (1998). https://doi.org/10.1016/S0167-577X(97)00121-3 - M. Ahmadzadeh, H. Baharvandi, H. Abdizadeh, and A. M. Hadian, "Synthesis of Nano-Size MgO Powder by Chemical Deposition of Low Cost Raw Materials," Int. J. Mod. Phys. B, 22 [18] 3185-92 (2008). https://doi.org/10.1142/S0217979208048097
- ASTM B311-93, Test Method for Density Determination for Powder Metallurgy (P/M) Materials Containing Less Than Two Percent Porosity. Developed by Subcommittee: B09.11, Book of Standards: 02(05); 2002.
-
D. Galusek, J. Sedlacek, P. Svancarek, R. Riedel, R. Satet, and M. Hoffmann, "The Influence of Post-Sintering HIP on the Microstructure, Hardness, and Indentation Fracture Toughness of Polymer-Derived
$Al_2O_3$ -SiC Nanocomposites," J. Eur. Ceram. Soc., 27 [2-3] 1237-45 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.028 - S. Sinhamahapatra, M. Shamim, H. S. Tripathi, A. Ghosh, and K. Dana, "Kinetic Modeling of Solid State Magnesium Aluminum at Espinel Formation and its Validation," Ceram. Int., 42 [7] 9204-13 (2016). https://doi.org/10.1016/j.ceramint.2016.03.017
- ASTM C1161-02c, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature. Developed by Subcommittee: C28.01, Book of Standards: 15(01); 2008.
- ASTM C769-98, "Standard Test Method for Sonic Velocity in Manufactured Carbon and Graphite Materials for Use in Obtaining an Approximate Young's Modulus", Developed by Subcommittee: D02.F0, Book of Standards: 05(05); 2005.
- ASTM C1327-08, Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics", Developed by Subcommittee: C28.01, Book of Standards: 15(01); 2008.
- A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, "Determination of Fracture Toughness Using the Areas of Microcrack Tracks Left in Brittle Materials by Vickers Indentation Test," J. Adv. Ceram., 2 [1] 87-102 (2013). https://doi.org/10.1007/s40145-013-0047-z
- K. A. Nihhara, R. Morena, and D. P. H. Hasselman, "Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios," J. Mater. Sci. Lett., 1 [1] 13-6 (1982). https://doi.org/10.1007/BF00724706
- D. K. Shetty, I. G. Wright, P. N. Mincer, and A. H. Cluar, "Indentation Fracture of WC-Co Cermets," J. Mater. Sci., 20 [5] 1873-82 (1985). https://doi.org/10.1007/BF00555296
-
R. Gao, H. Wang, Q. Zhu, Q. Yang, X. Sun, B. Li, S. Xu, and X. Zhang, "The Forming Region and Mechanical Properties of
$SiO_2-Al_2O_3$ -MgO Glasses," J. Non-Cryst. Solids, 470 132-37 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.004 -
R. Mohammad-Rahimi, H. R. Rezaie, and A. Nemati, "Sintering of
$Al_2O_3$ -SiC Composite from Sol-Gel Method with MgO,$TiO_2$ and$Y_2O_3$ Addition," Ceram. Int., 37 [5] 1681-88 (2011). https://doi.org/10.1016/j.ceramint.2011.01.035 - A. R. Yazdi, H. Baharvandi, H. Abdizadeh, J. Purasad, A. Fathi, and H. Ahmadi, "Effect of Sintering Temperature and Siliconcarbide Fraction on Density, Mechanical Properties and Fracture mode of Alumina-Silicon Carbide Micro/Nanocomposites," Mater. Des., 37 251-55 (2012). https://doi.org/10.1016/j.matdes.2011.12.038
-
C. C. Anya and S. G. Roberts, "Pressureless Sintering and Elastic Constants of
$Al_2O_3$ -SiC Nanocomposites," J. Eur. Ceram. Soc., 17 [4] 565-73 (1997). https://doi.org/10.1016/S0955-2219(96)00092-1 - E. Medvedovski, "Alumina-Mullite Ceramics for Structural Applications," Ceram. Int., 32 [4] 369-75 (2006). https://doi.org/10.1016/j.ceramint.2005.04.001
-
A. Moradkhani and H. Baharvandi, "Microstructural Analysis of Fracture Surfaces and Determination of Mechanical Properties of
$Al_2O_3$ -SiC-MgO Nanocomposites," Int. J. Refract. Met. Hard Mater., 67 40-55 (2017). https://doi.org/10.1016/j.ijrmhm.2017.05.004 - M. Sternitzke, "Review: Structural Ceramic Nanocomposites," J. Eur. Ceram. Soc., 17 [9] 1061-82 (1997). https://doi.org/10.1016/S0955-2219(96)00222-1
-
L. Xuefei, L. Hanlian, H. Chuanzhen, Z. Bin, and Z. Longwei, "High Temperature Mechanical Properties of
$Al_2O_3$ -based Ceramic Tool Material Toughened by SiC Whiskers and Nanoparticles," Ceram. Int., 43 [1] 1160-65 (2017). https://doi.org/10.1016/j.ceramint.2016.10.057 - J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook; 3rd Edition, CRC Press, Florida, 2001.
-
A. Moradkhani, H. Baharvandi, and M. M. M. Samani, "Mechanical Properties and Microstructure of B4C-Nano-
$TiB_2$ -Fe/Ni Composites under Different Sintering Temperatures," Mater. Sci. Eng. A, 665 141-53 (2016). https://doi.org/10.1016/j.msea.2016.04.034 - A. Moradkhani and H. Baharvandi, "Analyzing the Microstructures of W-ZrC Composites Fabricated through Reaction Sintering and Determining their Fracture Toughness Values by Using the SENB and VIF Methods," Eng. Fract. Mech., 189 501-13 (2018). https://doi.org/10.1016/j.engfracmech.2017.11.038
-
A. Moradkhani and H. Baharvandi, "Effects of Additive Amount, Testing Method, Fabrication Process and Sintering Temperature on the Mechanical Properties of
$Al_2O_3$ /3Y-TZP Composites," Eng. Fract. Mech., 191 446-60 (2017). https://doi.org/10.1016/j.engfracmech.2017.12.033 - A. Moradkhani, H. Baharvandi, and A. Naserifar, "Fracture Toughness of 3Y-TZP Dental Ceramics by Using Vickers Indentation Fracture and SELNB Methods," J. Korean Ceram. Soc., 56 [1] 37-48 (2019). https://doi.org/10.4191/kcers.2019.56.1.01
-
B. K. Jang, M. Enoki, T. Kishi, H. K. Oh, "Effect of Second Phase on Mechanical Properties and Toughening of
$Al_2O_3$ based Ceramic Composites," Comps. Eng., 5 [10-11] 1275-86 (1995). https://doi.org/10.1016/0961-9526(95)00069-Y - J. Zhao, L. C. Stearns, M. P. Harmer, H. M. Chan, G. A. Miller, and R. F. Cook, "Mechanical Behavior of Alumina-Silicon Carbide Nanocomposites," J. Am. Ceram. Soc., 76 [2] 503-10 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03814.x
- T. Ohji, Y. K. Jeong, Y. H. Choa, and K. Niihara, "Strengthening and Toughening Mechanisms of Ceramic Nanocomposites," J. Am. Ceram. Soc., 81 [6] 1453-60 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02503.x
- I. Levin, W. D. Kaplan, D. G. Brandon, and A. A. Layyous, "Effect of SiC Submicrometer Particle Size and Content on Fracture Toughness of Alumina-SiC Nanocomposites," J. Am. Ceram. Soc., 78 [1] 254-56 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08397.x
Cited by
- Reactive, nonreactive, and flash spark plasma sintering of Al 2 O 3 /SiC composites-A comparative study vol.103, pp.1, 2020, https://doi.org/10.1111/jace.16734
- 3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production vol.58, pp.6, 2019, https://doi.org/10.1007/s43207-021-00142-4