• 제목/요약/키워드: $Li_4Mn_5O_{12}$

검색결과 26건 처리시간 0.027초

연소합성법에 의한 결함구조 Li4Mn5O12제조와 하이브리드 커패시터 적용 (Synthesis of Defective-Structure Li4Mn5O12 by Combustion Method and Its Application to Hybrid Capacitor)

  • 김훈욱;선양국;이범석;진창수;신경희
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.103-109
    • /
    • 2010
  • $LiNO_3$, $Li(CH_3COO){\cdot}2H_2O$ 그리고 $Mn(CH_3COO)_2{\cdot}4H_2O$를 출발물질로 하여 $Li_4Mn_5O_{12}$를 합성 하였으며 합성방법은 연소합성법을 사용하였다. $Li_4Mn_5O_{12}$$400^{\circ}C$ 이상의 열처리 온도에서 얻을 수 있었으나 $400^{\circ}C$로 열처리 하였을 때 $Mn_2O_3$가 같이 존재하는 것을 관찰할 수 있었다. $400^{\circ}C$에서 5시간동안 열처리한 $Li_4Mn_5O_{12}$를 3.7~4.4 V의 전압범위에서 1C-rate로 충방전 하였을 때 가장 좋은 첫 번째 방전용량(41.5 mAh/g)을 나타내었다. 이것을 하이브리드 커패시터에 적용하였을 때 100 mA/g의 전류밀도에서 24.74 mAh/g (10.46 mAh/cc)의 방전용량을 나타내었으며 이때의 에너지 밀도는 39 Wh/kg (16.49Wh/cc)으로 우수하였다.

Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성 (Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite)

  • 고형신;최정은;이종대
    • Korean Chemical Engineering Research
    • /
    • 제52권1호
    • /
    • pp.52-57
    • /
    • 2014
  • 본 연구에서는 낮은 사이클 안정성을 갖는 MCMB의 단점을 향상시키기 위하여 높은 사이클 안정성과 부피팽창이 없는 장점을 갖는 물질인 $Li_4Ti_5O_{12}$를 코팅하여 core-shell 구조의 $MCMB/Li_4Ti_5O_{12}$를 합성하고 $MCMB/Li_4Ti_5O_{12}$를 음극으로, $LiMn_2O_4$, Active carbon fiber를 양극으로 사용하여 단위 셀을 제조하였다. $LiPF_6$ 염과 EC/DMC/EMC 용매를 전해질로 사용하여 제조한 하이브리드 커패시터 단위 셀로 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행하여 전기화학적 특성을 평가한 결과, MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ 전극을 사용한 하이브리드 커패시터가 MCMB 전극의 하이브리드 커패시터 보다 좋은 충/방전 성능을 보였고, 67 Wh/kg, 781 W/kg의 에너지밀도와 출력밀도를 나타내었다.

졸-겔법에 의한 Li4/3Mn5/3O4의 합성 및 전기화학적 특성 (Synthesis of Li4/3Mn5/3O4 by Sol-Gel Process and its Electrochemical Properties)

  • 이진식;이철태
    • 공업화학
    • /
    • 제10권1호
    • /
    • pp.80-84
    • /
    • 1999
  • 출발 물질로 lithium acetate와 manganese acetate를 이용하여 졸겔법으로 결함 스피넬 구조인 $Li_{4/3}Mn_{5/3}O_4$를 합성하였으며, 리튬이차전지용 전극물질로 이용하기 위한 전극 특성을 조사하였다. $AA/Mn(OAc)_2$의 몰비를 0.2, $H_2O/Mn(OAc)_2$에 대한 $NH_4OH/Mn(OAc)_2$의 혼합 몰비를 0.4로 혼합하여 xerogel을 합성하고 이를 산소 분위기하에서 $150^{\circ}C$에서 12시간 동안 1차 열처리한 다음 $350^{\circ}C$에서 12시간 동안 2차 열처리하여 합성하였다. 2.0~3.2V의 전위 영역에서 충 방전 실험한 결과 $Li/Li_{4/3}Mn_{5/3}O_4$ cell은 84.23 mAh/g의 방전용량을 나타내었으며, 좋은 cycleability을 나타내었다.

  • PDF

HEV용 리튬 이차전지 양극물질 $LiMn_2O_4$$Li_4Ti_5O_{12}$ 코팅에 따른 영향 (Effect of $Li_4Ti_5O_{12}$ coating layer on capacity retention of $LiMn_2O_4$ as cathode materials of lithium ion secondary batteries for HEV application)

  • 위인루;최병현;지미정;이대진;신재수;송광호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.125-128
    • /
    • 2007
  • In these recent years, low cost and stable battery electrode materials have been studied for HV/HEV application. Spinel cathode material $LiMn_2O_4$ is widely studied as a promising cathode material of lithium ion secondary batteries because of it is low cost, easily to be prepared and capable to be operated in high voltage range. In this study, $LiMn_2O_4$ was undergoing surface modification with spinel lithium titanium oxide by sol-gel method in order to enhance its capacity retention. Properties of both unmodified and surface-modified $LiMn_2O_4$ were characterized by XRD, SEM, particle size analyzer while their cycling performance was tested with charge and discharge tester.

  • PDF

소성법에 의한 LiMn2O4의 제조시 반응 온도의 영향과 전기화학적 특성 (The Effect of Reaction Temperature for Synthesis of LiMn2O4 by Calcination Process and the Electrochemical Characteristics)

  • 이철태;이진식;김현중
    • 공업화학
    • /
    • 제9권2호
    • /
    • pp.220-225
    • /
    • 1998
  • 스피넬 구조의 $LiMn_2O_4$$Li_2CO_3$$MnO_2$를 사용하여 $750{\sim}900^{\circ}C$에서 소성해서 합성하였다. 이 때 $850^{\circ}C$에서 12시간 동안 소성할 경우 입방정 구조의 $LiMn_2O_4$가 얻어졌다. 그러나 $900^{\circ}C$에서 소성해서 합성할 경우 산소의 발생으로 인해서 0.06M의 $Mn^{+4}$$Mn^{+3}$로 전이되면서 $LiMn_2O_{3.97}$이 얻어졌다. 이것은 스피넬 구조의 $LiMn_2O_4$에서 octahedral site의 $Mn^{+3}$ 이온의 증가로 인해서 Jahn-Teller distortion이 발생되며, 이로 인해 $3.6{\sim}4.3V_{Li/Li}+$의 전위범위에서 $0.25mA/cm^2$으로 15 cycle 동안 충 방전 실험한 결과 $900^{\circ}C$에서 합성된 스피넬 구조의 $LiMn_2O_4$는 82 mAh/g에서 50 mAh/g으로 용량 감소가 나타났으나 $850^{\circ}C$에서 합성한 $LiMn_2O_4$는 102~64 mAh/g을 유지했다.

  • PDF

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min;Yu, Seung-Ho;Song, Min-Seob;Kim, Sung-Soo;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4205-4209
    • /
    • 2011
  • The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.

재충전이 가능한 박막전자용 $LiMn_2O_4$ 박막 전지의 전기화학 특성 분석 (Analysis of Electrochemical Characteristics of the Rechargeable $LiMn_2O_4$ Thin Film Battery)

  • 김주석;정헌준;김찬수;주승기
    • 전기화학회지
    • /
    • 제3권3호
    • /
    • pp.131-135
    • /
    • 2000
  • [ $LiMn_2O_4$ ]박막전지의 충방전 사이클에 따른 용량 감소의 원인을 파악하기 위하여, $LiMn_2O_4/1M\;LiClO_4-PC/Li$전지를 구성하여 충방전 사이클에 따른 AC impedance분석을 수행하였다. 적절한 등가회로를 이용하여 비선형 최소자승 맞춤에서 얻은 값이 Impedance측정 결과와 잘 일치하였다. 충방전에 따른 정전용량은 초기의 급격한 감소를 보인 이후 완만한 감소를 보였다. 충방전 사이클이 초기 70-100사이클까지는 저항 성분 중 양극전해질 계면의 전하 전달저항 성분이 급격히 증가하다가 이후 안정된 값을 보임으로 초기 급격한 용량변화의 원인으로 파악되었다. 전하전달 저항이 안정된 이후에는 Warburg저항이 충방전에 따라 조금씩 증가하였으며, LiMn2O4박막의 화학확산 계수가 사이클에 따라 초기 $5.15\times10^{-11}cm^2/sec$에서 800사이클이 지난 후 $6.3\times10^{-12}cm^2/sec$로 점차 감소하는 것이 관찰되어 100사이클이 후의 용량감소의 지배적 원인으로 파악하였다. Warburg저항의 증가는 Jahn-Teller변형 또는 Mn용해에 의한 것으로 추정하였다.

리튬 이온 폴리머 전지용 고용량 LiMnO2-organic Composite 정극의 전기화학적 특성 (Electrochemical Properties of LiMnO2-organic Composite Cathodes with High Capacity for Lithium Ion Polymer Battery)

  • 김종욱;조영재;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제15권2호
    • /
    • pp.162-168
    • /
    • 2002
  • The purpose of this study is to research and develop LiMnO$_2$-organic and Li$_{0.3}$MnO$_{2}$-organic composite with high energy density for Lithium ion polymer battery. This paper describes cyclic voltammetry, impedance sepctroscopy, electrochemical properties of LiMnO$_2$-organic and Li$_{0.3}$MnO$_{2}$-organic composite with polymer electrolyte as a function of a mixed ratio. The first discharge capacity of LiMnO$_2$-PAn with 3 wt.% PAn was 83mHA/g, while that of Li$_{0.3}$MnO$_{2}$-PPy composite was 136 mAh/g. The Ah efficiency was above 98% after the 2nd cycle. The LiMnO$_2$-PAn with DMcT 2 wt.% and Li$_{0.3}$MnO$_{2}$-PPy composites cathode with 5wt. PPy in PVDF-PC-EC-LiClO$_4$ electrolyte showed good capaity with cycling. The discharge capacity of LiMnO$_2$-PAn with wt.% DMcT was 80 and 130 mAh/g at 1st and 12th cycle, respectively. The capacity of LiMnO$_2$-PAn composite with 2 wt.% DMcT was higher than that of LiMnO$_2$-PAn composite.mposite.

스피넬상 $Fe_{3}O_{4}$를 이용한 $CO_{2}$ 분해에서 $LiMn_{2}O_{4}$ 첨가효과 (Effects of $LiMn_{2}O_{4}$ Addition on $CO_{2}$ Decomposition Using Spinel Phase $Fe_{3}O_{4}$)

  • 양천모;박영구;조영구;임병오
    • 한국응용과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.174-179
    • /
    • 2001
  • The spinel $Fe_{3}O_{4}$ powders were synthesized using 0.2 $M-FeSO_4{\cdot}7H_{2}O$ and 0.5 M-NaOH by oxidation in air and the spinel $LiMn_{2}O_{4}$ powders were synthesized at 480 $^{\circ}C$ for 12 h in air by a sol-gel method using manganese acetate and lithium hydroxide as starting materials. The synthesized $LiMn_{2}O_{4}$ powders were mixed at portion of 5, 10, 15 and 20 wt% of $Fe_{3}O_{4}$ powders using a ball-mill. The mixed catalysts were dried at room temperature for 24 hrs. The mixed catalysts were reduced by hydrogen gas at 350 $^{\circ}C$ for 2 h. The carbon dioxide decomposition rates of the mixed catalysts were 90% in all the mixed catalysts but the decomposition rate of carbon dioxide was increased with adding $LiMn_{2}O_{4}$ powders to $Fe_{3}O_{4}$ powders.

Variation of Li Diffusion Coefficient during Delithiation of Spinel LiNi0.5Mn1.5O4

  • Rahim, Ahmad Syahmi Abdul;Kufian, Mohd Zieauddin;Arof, Abdul Kariem Mohd;Osman, Zurina
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.128-137
    • /
    • 2022
  • For this study, the sol gel method was used to synthesize the spinel LiNi0.5Mn1.5O4 (LNMO) electrode material. Structural, morphological, electrochemical, and kinetic aspects of the LNMO have been characterized. The synthesized LNMO was indexed with the Fd3m cubic space group. The excellent capacity retention indicates that the spinel framework of LNMO has the ability to withstand high rate charge-discharge throughout long cycle tests. The Li diffusion coefficient (DLi) changes non-monotonically across three orders of magnitude, from 10-9 to 10-12 cm2 s-1 determined from GITT method. The variation of DLi seemed to be related to three oxidation reactions that happened throughout the charging process. A small dip in DLi at the beginning stage of Li deintercalation is correlated with the oxidation of Mn3+ to Mn4+. While two pronounced DLi minima at 4.7 V and 4.75 V are due to the oxidation of Ni2+/Ni3+ and Ni3+/Ni4+ respectively. The depletion of DLi at the high voltage region is attributed to the occurrence of two successive phase transformation phenomena.