• Title/Summary/Keyword: $Li_2ZrO_3$

Search Result 110, Processing Time 0.024 seconds

Piezoelectric and Dielectric Characteristics of Low Temperature Sintering PMS-PNN-PZT Ceramics According to the Amount of PNN Substitution (PNN 치환에 따른 저온소결 PMS-PMN-PZT계 세라믹스의 압전 및 유전특성)

  • Lee, Snag-Ho;Kim, Kook-Jin;Yoo, Ju-Hyun;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.253-253
    • /
    • 2007
  • 압전 액츄에이터 및 초음파진동자의 응용범위가 넒어짐에 따라 변위량, 응력 등을 개선시키기 위해 전기기계결합계수 kp 및 압전 d상수가 종전보다 큰 재료가 요구되고 있으며, 초음파진동자나 압전 모터와 같이 마찰에 의한 열손실이 많이 발생하는 액츄에이터에 적용할 큰 기계적품질계수롤 가지는 저손실 압전 액츄에이터 및 초음파진동자용 재료가 필요한 실정이다. PZT계 세라믹스는 높은 유전상수와 압전특성으로 전자세라믹스분야에서 가장 널리 사용되어지고 있지만, $1200^{\circ}C$이상의 높은 소결온도 때문에 $1000^{\circ}C$ 부근에서 급격히 휘발되는 PbO로 인한 환경오염과 기본조성의 변화로 인한 압전특성의 저하가 문제시 되고 있다. $Pb(Ni_{1/3}Nb_{2/3})O_3$는 약 $-120^{\circ}C$정도의 큐리온도룰 가지는 강유전체로 Pb(Zr, Ti)$O_3$계 세라믹스에 치환 시 유전상수와 전기기계결합계수를 개선시키는 대표적인 성분이다. 따라서 본 연구에서는 저온소결 저손실의 적층형 압전 액츄에이터를 개발하기 위해 PMS-PMN-PZT계 세라믹스에 $Pb(Ni_{1/3}Nb_{2/3})O_3$ 세라믹스를 치환하고 $Li_2CO_3$$Na_2CO_3$ ZnO를 소결조재로 사용하여 저온소결 하였으며 PNN 치환량에 따른 결과를 관찰 하였다.

  • PDF

Quantitative Analysis of Trace Metals in Lithium Molten Salt by ICP-AES (ICP-AES를 이용한 리튬 용융염내의 미량 금속성분원소 정량에 관한 연구)

  • Kim, Do-Yang;Pyo, Hyung-Yeal;Park, Yong-Joon;Park, Yang-Soon;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.309-314
    • /
    • 2000
  • The quantitative analysis of various trace metals including fission products in lithium molten salts has been performed using a inductively coupled plasma atomic emission spectrometer (ICP-AES). The spectral interferences of lithium content, 500, 1,000 and 2,000 mg/L, in the sample solution were investigated using an optimum wavelength for the respective metal species. As a result, the line intensities for Y, Nd, Sr, and La had no influences from the lithium content up to 2,000 mg/L, while Mo, Ba, Ru, Pd, Rh, Zr and Ce showed spectral interferences of 10% to 50%. The group separation of metals from lithium in the molten salts solution was carried out by adding ammonia water into the solution. The recovery of Ru, Y, Rh, Zr, Nd, Ce, La and Eu was found to be over 90%, while Mo, Ba, Pd, and Sr provided low recovery percentages.

  • PDF

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

Enhancement of Surface Hardness of Zirconia Ceramics by Hydroxyapatite Powder Bed Sintering (Hydroxyapatite 분위기 소결을 통한 지르코니아 표면 경도 강화)

  • Choi, Min-Geun;Lim, Ji-Ho;Kong, Kyu-Hwan;Jeong, Dae-Yong;Lee, Wonjoo;Li, Long-Hao;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.677-681
    • /
    • 2014
  • To increase the mechanical property of zirconia, we have investigated the phase change and the resulting hardness of zirconia ceramics by hydroxyapatite (HA) powder bed sintering. It was observed using X-ray diffraction that the cubic zirconia phase, which has a higher hardness value than that of the tetragonal phase, was obtained at the surface of 3 mol% $Y_2O_3$ doped tetragonal zirconia polycrystal (3Y-TZP) ceramics during the sintering process; in our experimental conditions, the phase change at the surface increased as the sintering time increased. We believe that the observed crystalline phase change originated from the decomposition of HA and the diffusion of CaO, as follows. CaO, which was derived from the decomposition of HA at high temperature ($1400^{\circ}C$), diffused into the surface of 3Y-TZP and acted as a stabilizer. As a result, the Vickers hardness value of the treated specimens was higher than that of the non-treated specimen due to the formation of the cubic phase on the surface of 3Y-TZP.

Radiolabeling of nanoparticle for enhanced molecular imaging

  • Kim, Ho Young;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.103-112
    • /
    • 2017
  • The combination of nanoparticle with radioisotope could give the in vivo information with high sensitivity and specificity. However, radioisotope labeling of nanoparticle is very difficult and radioisotopes have different physicochemical properties, so the radioisotope selection of nanoparticle should be carefully considered. $^{18}F$ was first option to be considered for labeling of nanoparticle. For the labeling of $^{18}F$ with nanoparticle, Prosthetic group is widely used. Iodine, another radioactive halogen, is often used. Since radioiodine isotopes are various, they can be used for different imaging technique or therapy in the same labeling procedures. $^{99m}Tc$ can easily be obtained as pertechnatate ($^{99m}{TcO_4}^-$) by commercial generator. Ionic $^{68}Ga$ (III) in dilute HCl solution is also obtained by generator system, but $^{68}Ga$ can be substituted for $^{67}Ga$ because of the short half-life (67.8 min). $^{64}Cu$ emits not only positron but also ${\beta}-particle$. Therefore $^{64}Cu$ can be used for imaging and therapy at the same time. These radioactive metals can be labeled with nanoparticle using the bifunctional chelator. $^{89}Zr$ has longer half-life (78.4 h) and is used for the longer imaging time. Unlike different metals, $^{89}Zr$ should use the other chelate such as DFO, 3,4,3-(LI-1,2-HOPO) or DFOB.

Mineralogy and Chemical Composition of the Residual Soils (Hwangto) from South Korea (우리 나라 황토(풍화토)의 구성광물 및 화학성분)

  • 황진연;장명익;김준식;조원모;안병석;강수원
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.147-163
    • /
    • 2000
  • The mineralogy and chemical composition of reddish to brownish yellow residual soils, so called "Hwangto" have been examined according to representative host rocks. The result of the study indicates that Hwangto consists of 40-80% clay minerals and various minerals such as quartz, feldspar, hornblende, goethite, and gibbsite. Clay minerals include kaolinite, halloysite, illite, hydroxy interlayered vermiculite (HIV), mica/vermiculite interstratifield mineral and chlorite. The mineralogical constituents and contents of Hwangto were different depending on the types of host rocks. Moreover, the Jurassic granitic rocks contain relatively more kaolin minerals, whereas the Cretaceous granitic rocks contain more HIV and illite. In addition, reddish Hwangto contains relatively more kaolinite and HIV, and yellowish Hwangto contains more illite and halloysite. It is suggested that feldspars and micas of host rocks were chemically weathered into illite, halloysite, illite/vermiculite interstratified minerals, and HIV, and finally into kaolinite. Compared with their host rocks, the major chemical compositions of Hwangto tend to contain more $Al_2O_3,\;Fe_2O_3,\;H_2O$ in amount and less Ca, Mg, and Na. Hwangto contains relatively high amount of trace elements, P, S, Zr, Sr, Ba, Rb, and Ce including considerable amount of Li, V, Cr, Zn, Co, Ni, Cu, Y, Nb, La, Nd, Pb, Th in excess of 10 ppm. Relatively high amount of most trace elements were detected in the Hwangto. The major and minor chemical compositions of the Hwangto were different depending on the types of host rocks. However, their difference was in the similar range compared with the compositions of host rocks.

  • PDF

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

Study on Engineering Barrier Role in Nuclear Waste Disposal

  • Hua, Zhang;Jianwen, Yang;Baojun, Li;Shanggeng, Luo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.73-82
    • /
    • 2004
  • This paper studies the leaching behaviors of pyrochlore-rich synroc incorporated 46.8wt% simulated actinides waste under the five simulated geological disposal media, which included the bentonite, granite, granite + ferroferric oxide, granite + cement, bentonite + ferroferric oxide, respectively. The mass loss rates reached to equilibrium after 182 day and was 10-7 g/$\textrm{mm}^2{\cdot}d$. That suggests the mass loss rate of pyrochlore-rich synroc, loaded 46.8wt% actinides waste, was very low. The surfaces of the leached specimens were analyzed by XRD, SEM/EDS. The experimental results show that the pyrochlore-rich synroc samples in the systems, which contained bentonite and cement, have two new phases formed on the leached specimens surface at $90^{\circ}C$ for 728d; The bentonite and cement can retard the elements leaching; $Fe_3O_4$ can speed the elements leaching; Expect for Ti ion depleted on the sample surface, other ion, such as U, Zr, AI, Ca, were in equable states and Ba ion was enriched during test time, which indicated the simulated disposal media have good ability to retard the leaching behavior of the pyrochlore-rich synroc.

  • PDF

Element Mobility during the Weathering of Granitic Gneiss in the Yoogoo Area, Korea. (유구지역 화강암질 편마암의 풍화작용에 따른 원소의 거동)

  • 이석훈;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.39-51
    • /
    • 2001
  • 공주군 유구면 일대의 화강암질 편마암의 풍화작용에 따른 원소의 거동과 pH와 이차광물과의 관계를 XRF, ICP-AES, ICP-MS를 이용한 원소분석결과를 통하여 검토하였다. 이 지역의 암석은 pH6 내외의 산성환경, 침철석, 아나타제와 같은 다양한 이차광물을 생성하면서 심각한 화학조성의 변화를 초래했다. 주원소의 화학조성을 이용한 풍화지수는 토양층에서 79~88로 모암 중의 사장석이 용해되고 흑운모가 변질되어 캐올리광물의 생성이 활발한 방향으로 풍화작용이 진행되었다. 지표층으로 가면서 Al에 대한 주 원소의 거동은 Si, Ca, Na, K, P가 감소하고 Fe, Ti, Mn이 증가하는 경향을 보이며 pH가 낮은 풍화단면에서 주 원소의 변화량이 더 크다. 이 풍화대에서 Mg은 거의 일정하다. Li, As 모든 전이원소는 pH가 감소함에 따라 증가하며 특히 이들 원소는 Fe의 함량과 비례해서 증가해 침철석과 공침하였거나 표면에 흡착되어 있는 것으로 보인다. Ga은 Fe와 비례하기는 하지만 변화량은 전 풍화단면에서 일정하다. Zr, Mo, Sn, Cd은 pH에 변화에 상관없이 일정한 반면에 Rb, Sr, Ba, Y, Pb, Th, U 등은 감소하는 경향을 보인다. 특히 Rb 과 Sr은 Ca에 비례해서 감소한다. 희토류원소는 전 풍화단면에서 감소하는 경향을 보이는데 $Al_2$$O_3$에 대한 상대적인 변화량을 보면 경희토류원소는 사프롤라이트(saprolite)하부와 상부에서 부화되어 있고 중부 사프롤라이트와 토양층에서 감소하는 반면에 중희토류원소는 사프롤라이트 하부와 상부에서 감소하고 중부사프롤라이트 및 토양층에서 부화되는 경향을 보인다. 전반적으로 희토류원소의 원자번호가 클수록 손실율이 커진다. 이 풍화단면에서 원소의 거동은 각 풍화층의 pH와 생성된 이차광물의 조성에 지배를 받았다.

  • PDF