• Title/Summary/Keyword: $Li_2SiO_3$

Search Result 299, Processing Time 0.07 seconds

Electrical Properties of Traveling-wave Coplanar Waveguide Transmission Line with a Abruptly broken Input-Output-taper for $LiNbO_3$Optical Modulator Electrode (급격히 꺾인 Taper를 갖는 Traveling-wave Coplanar Waveguide형 $LiNbO_34$전기광학변조기 전송선로의 전기적 특성)

  • 정운조;김성구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1051-1057
    • /
    • 2000
  • A traveling-wave CPW(coplanar waveguide) electrode with abruptly broken input/output-taper for LiNbO$_3$optical modulator was designed and fabricated. The electrical characteristics of traveling-wave electrode on z-cut LiNbO$_3$crystal with SiO$_2$buffer layers were measured by network analyzer. To confirm the possibility of the electro-optic modulator electrode, detailed calculations of the impedance, microwave effective index and attenuation constants are presented as a function of the microwave electrode thickness, but the buffer layer thickness is fixed as 1${\mu}{\textrm}{m}$. These characteristics are discussed from the viewpoint of the device optimization and are expected to be design guides for the LiNbO$_3$modulator’s electrodes.

  • PDF

Microwave Dielectric Properties of Ca[(Li1/3Nb2/3)0.2Ti0.8]O3-δ Ceramics with Addition of Zn-B-O Glass Systems (Zn-B-O 글라스 첨가에 의한 Ca[(Li1/3Nb2/3)0.2Ti0.8]O3-δ 세라믹스의 마이크로파 유전특성)

  • In, Chi-Seung;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.781-785
    • /
    • 2016
  • With trend of the miniaturization and the high-functionalizing of mobile communication system, low-loss microwave dielectric materials are widely used for high frequency communication components. These dielectric materials should be co-sintered with highly electric-conducting metal such as silver or copper for high-frequency and thick film process application. Sintering temperature of $Ca(Li_{1/3}Nd_{2/3})_{0.2}Ti_{0.8}]O_{3-{\delta}}$, which has excellent dielectric properties such as ${\varepsilon}_r$ above 40, quality factor ($Q{\cdot}f_0$) above 16,000 GHz, and TCF (temperature coefficient of resonant frequency) of $-20{\sim}-10ppm/^{\circ}C$, is reported as high as $1,175^{\circ}C$, so it could not be co-sintered with silver or copper. Therefore in this study, low-temperature melting glasses of Zn-B-O and Zn-B-Si-O systems were added to $Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-{\delta}}$ to lower its sintering temperature under $900^{\circ}C$ without losing excellency of dielectric properties. With 15 weight % of Zn-B-Si-O glass and sintered at $875^{\circ}C$, specimen showed density of $4.11g/cm^3$, ${\varepsilon}_r$ of 40.1, $Q{\cdot}f_0$ of 4,869 GHz, and TCF of $-5.9ppm/^{\circ}C$. With 15 weight % of Zn-B-O glass and sintered at $875^{\circ}C$, specimen showed density of $4.14g/cm^3$, ${\varepsilon}_r$ of 40.4, $Q{\cdot}f_0$ of 7,059 GHz, and TCF of $-0.92ppm/^{\circ}C$.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification (SiO2-Al2O3-P2O5 (SAP) 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 2. SAP조성에 따른 안정화/고형화특성 변화)

  • Ahn, Soo-Na;Park, Hwan-Seo;Cho, In-Hak;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP ($SiO_2-Al_2O_3-P_2O_5$) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of $Fe_2O_3$ into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP( Fe=0.1). The experimental results indicated that the addition of $Fe_2O_3$ increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing $B_2O_3$ into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP ($SiO_2-Al_2O_3-Fe_2O_3-P_2O_5-B_2O_3$) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3~4 g of wasteform for final disposal. The final volume would be about 3~4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

Synthesis of Li4Ti5O12 Thin Film with Inverse Hemispheric Structure

  • Lee, Sung-Je;Jung, Kwang-Hee;Park, Bo-Gun;Kim, Ho-Gi;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.360-364
    • /
    • 2010
  • $Li_4Ti_5O_{12}$ thin film with inverse hemispheric structure was fabricated on a Pt/Ti/$SiO_2$/Si substrate by the sol-gel and dip coating method for use as an anode for 3-dimensional (3D) thin-film batteries. Polystyrene (PS) beads of 400 nm diameter were used to prepare the template for the inverse hemispheric structure. A coating solution prepared using precursor sources was dropped on the template-deposited substrates, which were then calcinated at $400^{\circ}C$. The template was removed by calcination, and the inverse hemispheric structure was successfully formed by an annealing process. The cyclic performance during high-rate charge/discharge processes of the $Li_4Ti_5O_{12}$ film with inverse hemispheric structure was superior to that of the flat $Li_4Ti_5O_{12}$ film.

Corrosive Degradation of MgO/Al2O3-Added Si3N4 Ceramics under a Hydrothermal Condition (MgO/Al2O3가 소결조제로 첨가된 Si3N4 세라믹스의 수열 조건에서의 부식열화 거동)

  • Kim, Weon-Ju;Kang, Seok-Min;Park, Ji-Yeon
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.366-370
    • /
    • 2007
  • Silicon nitride ($Si_3N_4$) ceramics have been considered for various components of nuclear power plants such as the mechanical seal of a reactor coolant pump (RCP), the guide roller for a control rod drive mechanism (CRDM), and a seal support, etc. Corrosion behavior of $Si_3N_4$ ceramics in a high-temperature and high-pressure water must be elucidated before they can be considered as components for nuclear power plants. In this study, the corrosion behaviors of $Si_3N_4$ ceramics containing MgO and $Al_2O_3$ as sintering aids were investigated at a hydrothermal condition ($300^{\circ}C$, 9.0 MPa) in pure water and 35 ppm LiOH solution. The corrosion reactions were controlled by a diffusion of the reactive species and/or products through the corroded layer. The grain-boundary phase was preferentially corroded in pure water whereas the $Si_3N_4$ grain seemed to be corroded at a similar rate to the grain-boundary phase in LiOH solution. Flexural strengths of the $Si_3N_4$ ceramics were significantly degraded due to the corrosion reaction. Results of this study imply that a variation of the sintering aids and/or a control (e.g., crystallization) of the grain-boundary phase are necessary to increase the corrosion resistance of $Si_3N_4$ ceramics in a high-temperature water.

Properties of MFSEET′s with various gate electrodes using $LiNbO_3$ ferroelectric thin film ($LiNbO_3$강유전체 박막을 이용한 MFSFET's의 게이트 전극 변화에 따른 특성)

  • 정순원;김광호
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.2
    • /
    • pp.103-107
    • /
    • 2002
  • Metal/ferroelectric/semiconductor field effect transistors(MFSFET′s) with various gate electrodes, that are aluminum, platinum and poly-Si, using rapid thermal annealed $LiNbO_3$/Si(100) structures were fabricated and the properties of the FET′s have been discussed. The drain current of the "on" state of FET with Pt electrode was more than 3 orders of magnitude larger than the "off" state current at the same "read" gate voltage of 1.5 V, which means the memory operation of the MFSFET. A write voltage as low as about $\pm$4 V, which is applicable to low power integrated circuits, was used for polarization reversal. The retention properties of the FET using Al electrode were quite good up to about $10^3$ s and using Pt electrode remained almost the same value of its initial value over 2 days at room temperature.

Fabrication of Low Temperature Cofiring Substrate Containing Fluorine by Water Swelling (Water Swelling을 이용한 Fluorine함유 저온소결 기판의 제조)

  • 윤영진;최정헌;이용수;강원호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.19-25
    • /
    • 2002
  • Glass composed of $Li_2$O.MgO. $MgF_2$.$SiO_2$.$B_2O_3$ for the fabrication of green sheet was prepared by melting process, and glass ceramics was prepared by the process of nucleation and grystal growth for the glass of $Li_2$O.MgO. $MgF_2$.$SiO_2$.$B_2O_3$ system with Lithium fluorhectorite and Lithium boron fluorphlogopite crystal phase. Powderization of the glass ceramics was carried out by water swelling. The average particle size at this point was 2.574 $\mu\textrm{m}$. Slurry was prepared for green sheet using high viscous sol fabricated by water swelling, which shows cleavage phenomenon in prepared glass ceramics. The optimum ratio of powder to water for the tape casting was 18:100, and its viscosity was 11,000~14,000 cps.

  • PDF

Low Temperature Preparation of Transparent Glass-Ceramic Using Metal-Alkoxides (1) Synthesis and Properties of Porous Monolithic Gel in Li2O·1.7Al2O3·8.6SiO2 (금속 알콕시드를 이용한 투명 결정화유리의 저온 합성 (1) Li2O·1.7Al2O3·8.6SiO2 다공성 겔체의 합성)

  • Chun, Kyung-Soo;Tak, Joong-Jae
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.568-574
    • /
    • 2007
  • Crack-free dried gel monoliths of the composition $Li_2O1{\cdot}7Al_2O_3{\cdot}8.6SiO_2$ have been prepared as a precursor of transparent glass-ceramic by the hydrolysis and polycondensation of mixed metal alkoxides in solutions containing N,N-dimethylformamide as the drying control chemical additive, alcohols, and water. It was investigated that activation energy for gelation according to the variation of water concentration ranged from 13 to 14 kcal/mol. Only when the amount of water for gelation was 3 times higher than the stoichiometric amount, monolithic dry gels were successfully prepared after drying at $70{\sim}75^{\circ}C$ and at a rate of 0.1~0.3%/h. The specific surface area, the pore volume, the average pore diameters of dried gel at $180^{\circ}C$ were about $239.40m^2/g$, 0.001~0.03 mL/g, and $145.62{\AA}$, respectively. It showed that the dried monolithic gel had a porous body. The DTA curve had the first exothermic peak around $800^{\circ}C$ and the 2nd peak around $980^{\circ}C$, which may correspond to crystallization of the gel.

High Coulombic Efficiency Negative Electrode(SiO-Graphite) for Lithium Ion Secondary Battery (리튬이온이차전지용 고효율 음극(SiO-Graphite))

  • Shin, Hye-Min;Doh, Chil-Hoon;Kim, Dong-Hun;Kim, Hyo-Seok;Ha, Kyung-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Kim, Ki-Won;Oh, Dae-Hui
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • A new anode composition material comprising of SiO and Graphite has been prepared by adopting High energy ball milling (HEBM) technique. The anode material shows high initial charge and discharge capacity values of 1139 and 568 mAh/g, respectively. The electrode sustains reversible discharge capacity value of 719 mAh/g at 30th cycle with a high coulombic efficiency${\sim}99%$. Since the materials formed during initial charge process the nano silicon/$Li_4SiO_3$ and $Li_2O$ remains as interdependent, it may be expected that the composite exhibiting higher amount of irreversibility$(Li_2O)$ will deliver higher reversible capacity. In this study, constant current-constant voltage (CC-CV) charge method was employed in place of usual constant current (CC) method in order to convert efficiently all the SiO particles which resulted high initial discharge capacity at the first cycle. We improved considerably the initial discharge specific capacity of SiO/G composite by pretreatment(CC-CV).

Mechanism of MnS Precipitation on Al2O3-SiO2 Inclusions in Non-oriented Silicon Steel

  • Li, Fangjie;Li, Huigai;Huang, Di;Zheng, Shaobo;You, Jinglin
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1394-1402
    • /
    • 2018
  • This study investigates the mechanism of MnS precipitation on $Al_2O_3-SiO_2$ inclusions during the solidification of non-oriented silicon steel, especially the influence of the phase structures and sizes of the oxides on the MnS precipitation, by scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectrometry. The investigation results show that MnS tends to nucleate on submicron-sized $Al_2O_3-SiO_2$ inclusions formed by interdendritic segregation and that it covers the oxides completely. In addition, MnS can precipitate on micron-sized oxides and its precipitation behavior is governed by the phase structure of the oxides. The MnS embryo formed in a MnO-containing oxide can act as a substrate for MnS precipitation, thus permitting further growth via diffusion of solute atoms from the matrix. MnS also precipitates in a MnO-free oxide by the heterogeneous nucleation mechanism. Furthermore, MnS is less prone to precipitation in the $Al_2O_3$-rich regions of the $Al_2O_3-SiO_2$ inclusions; this can be explained by the high lattice disregistry between MnS and $Al_2O_3$.