• Title/Summary/Keyword: $LiFePO_4$ powder

Search Result 18, Processing Time 0.019 seconds

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho;Jeong-Hwan Song
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.185-193
    • /
    • 2024
  • In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

Rate Capability of LiFePO4 Cathodes and the Shape Engineering of Their Anisotropic Crystallites

  • Alexander, Bobyl;Sang-Сheol, Nam;Jung-Hoon, Song;Alexander, Ivanishchev;Arseni, Ushakov
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.438-452
    • /
    • 2022
  • For cuboid and ellipsoid crystallites of LiFePO4 powders, by X-ray diffraction (XRD) and microscopic (TEM) studies, it is possible to determine the anisotropic parameters of the crystallite size distribution functions. These parameters were used to describe the cathode rate capability within the model of averaging the diffusion coefficient D over the length of the crystallite columns along the [010] direction. A LiFePO4 powder was chosen for testing the developed model, consisting of big cuboid and small ellipsoid crystallites (close to them). When analyzing the parts of big and small rate capabilities, the fitting values D = 2.1 and 0.3 nm2/s were obtained for cuboids and ellipsoids, respectively. When analyzing the results of cyclic voltammetry using the Randles-Sevcik equation and the total area of projections of electrode crystallites on their (010) plane, slightly different values were obtained, D = 0.9 ± 0.15 and 0.5 ± 0.15 nm2/s, respectively. We believe that these inconsistencies can be considered quite acceptable, since both methods of determining D have obvious sources of error. However, the developed method has a clearly lower systematic error due to the ability to actually take into account the shape and statistics of crystallites, and it is also useful for improving the accuracy of the Randles-Sevcik equation. It has also been demonstrated that the shape engineering of crystallites, among other tasks, can increase the cathode capacity by 15% by increasing their size correlation coefficients.

Efficient Selective Recovery of Lithium from Waste LiFePO4 Cathode Materials using Low Concentration Sulfuric Solution and 2-step Leaching Method (저농도 황산 용액 및 2-스텝 침출 방법을 이용한 폐LiFePO4 양극재로부터 효율적인 리튬의 선택적 회수)

  • Dae-Weon Kim;Hee-Seon Kim
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • The recovery of valuable metals from waste lithium-based secondary batteries is very important in terms of efficiently utilizing earth's limited number of resources. Currently, the cathode material of a LiFePO4 battery, a type of battery which is widely used in automobiles, contains approximately 5% lithium. After use, the lithium in these batteries can be used again as a raw material for new batteries through lithium recycling. In this study, low-concentration sulfuric acid, a commonly used type of inorganic acid, was used to selectively leach the lithium contained in a waste LiFePO4 cathode material powder. In addition, in order to compare and analyze the leaching efficiency and separation efficiency of each component, the optimalleaching conditions were derived by applying a two-step leaching process with pulp density being used as a variable during leaching. When leaching with pulp density as a variable, it was confirmed that at a pulp density of 200 g/L, the separation efficiency was approximately 200 times higher than at other pulp densities because the iron and phosphorus components were hardly leached at this pulp density. Accordingly, the pulp density of 200 g/L was used tooptimize the leaching conditions for the selective leaching and recovery of lithium.

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

Synthesis and Conductive Properties of Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5) by Sol-Gel Method (Sol-Gel법에 의한 Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5)의 합성 및 전도특성)

  • Moon, Jung-In;Cho, Hong-Chan;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.346-351
    • /
    • 2012
  • $Li_{1+x}Al_xTi_{2-x}(PO_4)_3$(LATP) is a promising solid electrolyte for all-solid-state Li ion batteries. In this study, LATP is prepared through a sol-gel method using relatively the inexpensive reagents $TiCl_4$. The thermal behavior, structural characteristics, fractured surface morphology, ion conductivity, and activation energy of the LATP sintered bodies are investigated by TG-DTA, X-ray diffraction, FE-SEM, and by an impedance method. A gelation powder was calcined at $500^{\circ}C$. A single crystalline phase of the $LiTi_2(PO_4)_3$(LTP) system was obtained at a calcination temperature above $650^{\circ}C$. The obtained powder was pelletized and sintered at $900^{\circ}C$ and $1000^{\circ}C$. The LTP sintered at $900{\sim}1000^{\circ}C$ for 6 h had a relatively low apparent density of 75~80%. The LATP(x = 0.3) pellet sintered at $900^{\circ}C$ for 6 h was denser than those sintered under other conditions and showed the highest ion conductivity of $4.50{\times}10^{-5}$ S/cm at room temperature. However, the ion conductivity of LATP (x = 0.3) sintered at $1000^{\circ}C$ decreased to $1.81{\times}10^{-5}$ S/cm, leading to Li volatilization and abnormal grain growth. For LATP sintered at $900^{\circ}C$ for 6 h, x = 0.3 shows the lowest activation energy of 0.42 eV in the temperature range of room temperature to $300^{\circ}C$.

Direct growth of carbon nanotubes on LiFePO4 powders and the application as cathode materials in lithium-ion batteries (LiFePO4 분말 위 탄소나노튜브의 직접 성장과 리튬이온전지 양극재로의 적용)

  • Hyun-Ho Han;Jong-Hwan Lee;Goo-Hwan Jeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.317-324
    • /
    • 2024
  • We demonstrate a direct growth of carbon nanotubes (CNTs) on the surface of LiFePO4 (LFP) powders for use in lithium-ion batteries (LIB). LFP has been widely used as a cathode material due to its low cost and high stability. However, there is a still enough room for development to overcome its low energy density and electrical conductivity. In this study, we fabricated novel structured composites of LFP and CNTs (LFP-CNTs) and characterized the electrochemical properties of LIB. The composites were prepared by direct growth of CNTs on the surface of LFP using a rotary chemical vapor deposition. The growth temperature and rotation speed of the chamber were optimized at 600 ℃ and 5 rpm, respectively. For the LIB cell fabrication, a half-cell was fabricated using polytetrafluoroethylene (PTFE) and carbon black as binder and conductive additives, respectively. The electrochemical properties of LIBs using commercial carbon-coated LFP (LFP/C), LFP with CNTs grown for 10 (LFP/CNTs-10m) and 30 min(LFP/CNTs-30m) are comparatively investigated. For example, after the formation cycle, we obtained 149.3, 160.1, and 175.0 mAh/g for LFP/C, LFP/CNTs-10m, and LFP/CNTs-30m, respectively. In addition, the improved rate performance and 111.9 mAh/g capacity at 2C rate were achieved from the LFP/CNTs-30m sample compared to the LFP/CNTs-10m and LFP/C samples. We believe that the approach using direct growth of CNTs on LFP particles provides straightforward solution to improve the conductivity in the LFP-based electrode by constructing conduction pathways.

Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries (플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석)

  • Minkyung Kim;Dong-hee Lee;Changyu Yeo;Sooyeon Choi;Chiwon Choi;Hyunmin Yoon
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method (Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.