• Title/Summary/Keyword: $La_2O_2CO_3$

Search Result 279, Processing Time 0.025 seconds

Oxygen Permeation Properties of La0.7Sr0.3Co0.3Fe0.7O3-δ Membrane (La0.7Sr0.3Co0.3Fe0.7O3-δ 분리막의 산소투과특성)

  • Son, Sou Hwan;Kim, Jong-Pyo;Park, Jung Hoon;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.310-315
    • /
    • 2009
  • Perovskite-type ceramic powder, $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$, have been synthesized successfully by the citrate method. As a result of TGA for precursor, metal-citrate complex in precursor was decomposed in the temperature range of $150{\sim}650^{\circ}C$. XRD analysis showed the single perovskite structure was observed over $1,000^{\circ}C$ without impurities. Typical dense membrane with 1.6 mm thickness has been prepared using as-prepared powder by pressing unilaterally and sintering at $1,300^{\circ}C$. The electrical conductivity of $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ membrane increased with increasing temperature at atmosphere of air and then decreased over $600^{\circ}C$ due to oxygen loss from the crystal lattice. The oxygen flux of $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ membrane in the range of 700 to $950^{\circ}C$ increased with the increasing temperature from 0.045 to $0.415ml/cm^2{\cdot}min$. The activation energy for oxygen permeation was calculated to be 89.17 kJ/mol.

Mössbauer Study of Silver Nanoparticle Coated Perovskites La0.7Sr0.3Co0.3Fe0.7O3-δ (LSCF) (은(Ag) 나노입자가 코팅된 페롭스카이트 La0.7Sr0.3Co0.3Fe0.7O3-δ의 Mössbauer 분광연구)

  • Uhm, Young-Rang;Rhee, Chang-Kyu;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.37-41
    • /
    • 2012
  • The Ag nanoparticles attached $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ (LSCF) perovskites were prepared by plasma method. The Ag nanoparticles with size of several nanometers deposited from the Ag target were coated on the surface of LSCF powders with size range from 0.2 to 3 ${\mu}m$. The agglomeration of Ag particles annealed at $800^{\circ}C$ under inert gas of Ar were rarely observed. The inter-diffusion between surface Ag and core LSCF is effectively strong to prevent aggregation of Ag nanoparticles. The wave number of FT-IR spectra for LSCF were largely shifted as the concentration of Ag on LSCF up to 2.11 wt.%. The ionic states of irons in LSCF were measured by M$\ddot{o}$ssbauer spectroscopy. The small amount of $Fe^{4+}$ ions are converted to $Fe^{3+}$ ions after Ag nanopartcles were coated on LSCF.

Electrochemical Performance and Cr Tolerance in a La1-xBaxCo0.9Fe0.1O3-δ (x = 0.3, 0.4 and 0.5) Cathode for Solid Oxide Fuel Cells

  • Choe, Yeong-Ju;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.308-314
    • /
    • 2015
  • The electrochemical performance and Cr poisoning behavior of $La_{1-x}Ba_xCo_{0.9}Fe_{0.1}O_{3-{\delta}}$ (LBCF, x = 0.3, 0.4, 0.5) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathodes were investigated for solid oxide fuel cells (SOFCs). The polarization resistance of the LBCF/GDC/LBCF symmetrical cell was found to decrease with increasing Ba content (x value). This phenomenon might be associated with the high oxygen vacancy concentration in the LBCF sample, with x = 0.5. In addition, there was no chromium poisoning in the LBCF cathode. On the other hand, the polarization resistance of the LSCF cathode was found to significantly increase after exposure to gaseous chromium species; it appears that this result stemmed from the formation of $SrCrO_4$ phase. Therefore, it can be expected that LBCF can be a durable potential cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFC).

Partial Oxidation of CH4 Using {0.7}Sr0.3Ga0.6Fe0.4O3-δ for Soild Oxide Fuel Cell (고체산화물 연료전지용 La0.7Sr0.3Ga0.6Fe0.4O3-δ계의 메탄부분산화반응)

  • Lee, Seung-Young;Lee, Kee-Sung;Lee, Shi-Woo;Kim, Jong-Won;Woo, Sang-Kuk
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2003
  • We fabricated mixed ionic-electronic conducting membranes, $CH_4\;Using\;{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, by solid state reaction method for solid oxide fuel cell. The membranes consisted of single perovskite phase and exhibited high relative density, $>95\%$. We coated $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ layer using screen printing method in order to improve surface reactivity of the $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$. As a result, the oxygen permeation flux of the coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ showed higher value, $0.5ml/min{\cdot}cm^2\;at\;950^{\circ}C$ than the uncoated one. Higher oxygen permeation was observed in the porously coated Lao $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$membranes with larger grain sizes. Syngas, $CO+H_2$, was successfully obtained from methane gas, $CH_4$, using the $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, with over $40\%\;of\;CH_4$ conversion and syngas yield. $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ membrane was stable even when it was exposed to the reducing environment, methane, for 600 hrs at $950^{\circ}C$.

Lithium Lanthanum Titanate Solid Electrolyte for All-Solid-State Lithium Microbattery (전고상박막전지를 위한 (Li,La)TiO3 고체전해질의 제조와 특성)

  • 안준구;윤순길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.930-935
    • /
    • 2004
  • $({Li}_{0.5}0{La}_{0.5}){TiO}_3$ (LLTO) solid electrolyte was grown on LiCo{O}_2 (LCO) cathode films deposited on $Pt/Ti{O}-2/Si{O}_2/Si$ substrate using pulsed laser deposition for all-solid-state lithium microbattery. LLTO solid electrolyte exhibits an amorphous phase at various deposition temperatures. LLTO films deposited at 10$0^{\circ}C$ showed a clear interrace without any chemical reaction with LCO, and showed an initial discharge capacity of 50 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 90 % after 100 cycles with Li anode in 1mol$ LiCl{O}_4$ in propylene carbonate (PC). The increase of capacity retention in LLTO/LCO structure than LCO itself was attributed to the structural stability of LCO cathode films by the stacked LLTO. The cells of LLTO/LCO with LLTO grown at $100^{\circ}C$ showed a good cyclic property of 63.6 % after 300 cycles. An amorphous LLTO solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium microbattery.

Electronic structure studies of CoFeRO (R=Hf,La,Nb) thin films by X-ray absorption spectroscopy

  • Song, J.H.;Gautam, S.;Chae, K.H.;Asokan, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.378-378
    • /
    • 2010
  • We report the electronic structure of CoFeO-R (R=Hf, La, Nb) thin films studied by x-ray absorption spectroscopy (XAS). These ferrites thin films were prepared by pulsed laser deposition method and characterized by XAS measurements at O K-, Co and Fe L-edges. The O K-edge spectra suggest that there is a strong hybridization between O 2p and 3d electrons of transition metal cations and Fe $L_{3,2}$-edge spectra indicate that Fe-ions exist in $Fe^{2+}$ with tetrahedral site of the spinel structure. Divalent Co ions is also distributed in tetrahedral site with rare earth ions goes to octahedral sites of spinel structure. X-ray magnetic circular dichroism (XMCD) is also used to explain the symmetry and magnetic nature dependence on rare-earth ions.

  • PDF

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

Synthesis of lanthanum oxyfluoride by grinding lanthanum oxide with poly (tetrafluoroethylene)

  • Lee Jaeryeong;Ahn Jonggwan;Kim Dongjin;Shin Heeyoung;Chung Hunsaeng;Saito Fumio
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.624-628
    • /
    • 2003
  • Lanthanum oxyfluoride can be synthesized by mechanochemical (MC) reaction between lanthanum oxide ($La_2O_3$) and polytetrafluoroethylene (PTFE, ($({CF_2CF_2}_n)$) in air using a planetary mill. MC reaction between the two materials induced from intensive grinding operation. The MC reaction is almost finished by 240min, and the products ground for 240min or more are composed of LaOF, amorphous $La(CO_3)F$ and amorphous carbon (C). Heating this MC reaction products at $600^{\circ}C$ enables us to eliminate amorphous C and decompose $La(CO_3)F$ into LaOF, so that pure LaOF material can be obtained as the final product. The average particle size of the final product (purified LaOF) is around few ten nanometers.

  • PDF

Effects of CaO on the Ethanol Sensing Characteristics of $LaCoC_3$ ($LaCoC_3$ 산화물의 에탄올 감지특성에 미치는 CaO의 영향)

  • Rim, Byung-O;Shon, Tai-Won;Yang, Chun-Hoi
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.2
    • /
    • pp.49-53
    • /
    • 1988
  • The perovskite-type compounds $La_{1-x}Ca_xCoO_3$ were synthesized, their thermochemical properties and the gaseous sensitivity were investigated in ethanol vapor. The maximum response for detecting gas corresponded with the exothermic peak of DTA experiment. In any case the substituent was increased, the responsive ratio for detecting gas was grown upon. However, the needed time for response was later, and the operating temperature was elevated. The mechanism of this electrical conductivity was explained by the oxygen ionic diffusion through oxygen vacancy produced by the substituent.

  • PDF

Electrochemical Reduction of Carbon Dioxide Using Porous La0.8Sr0.2CuO3 Electrode (다공성 La0.8Sr0.2CuO3 전극을 이용한 이산화탄소의 전기화학적 환원 반응)

  • Kim, Jung Ryoel;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.247-255
    • /
    • 2014
  • $La_{0.8}Sr_{0.2}CuO_3$ powder with the perovskite structure was prepared as electrode catalyst using citrate method. Porous electrode was made with as-prepared catalyst, carbon as supporter and polytetrafluoroethylene (PTFE) as hydrophobic binder. As results of potentiostatic electrolysis with potential of -1.5~-2.5 V vs. Ag/AgCl in 0.1, 0.5 and 1.0 M KOH at 5 and $10^{\circ}C$ on the porous electrode, liquid products were methanol, ethanol, 2-propanol and 1, 2-butanol regardless reaction temperature, while gas products were methane, ethane and ethylene at $5^{\circ}C$, and methane, ethane and propane at $10^{\circ}C$ respectively. Optimal potentials for $CO_2$ reduction in the view of over all faradic efficiency were high values (-2.0 and -2.2 V) for gas products whereas low potential (-1.5 V) for liquid products regardless of concentration and temperature.