• Title/Summary/Keyword: $LaFeO_{3}$ perovskite

Search Result 80, Processing Time 0.025 seconds

The Enhanced Magnetic Transition Temperature in Double Perovskites A2FeMoO6 (A=Ca, Sr and Ba) : Electron Doping Effects

  • Kim J.;Yang H. M.;Lee B. W.
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.10-13
    • /
    • 2005
  • We have studied effects of the partial substitution of $La^{3+}$ for $A^{2+}$ on the magnetic properties of double perovskites $A_2FeMoO_6$ (A=Ca, Sr and Ba). Polycrystalline $A_{2-x}La_xFeMoO_6(0{\leq}x{\leq}0.2)$ samples have been prepared by the conventional solid-state reaction in a stream of 5% $H_2$/Ar gas. The x-ray data indicate that A=Ca is monoclinic with the space group P$2_1$/n, A=Sr is tetragonal with the space group I4/mmm, and A=Ba is cubic with the space group Fm3m. The substitution of $La^{3+}$ for $A^{2+}$ results in a cell volume increase for A=Ca and a cell volume reduction for A=Ba. The decrease of saturation magnetization with increasing x arises from the reduction of magnetic moment associated with the electron doping and the disorder at the Fe and Mo sites. The partial substitution of magnetic $La^{3+}$ for $A^{2+}$ considerably enhances the Curie temperature $T_c$ from 316 K for x = 0 to 334 K for x = 0.2. This enhancement of $T_c$ with $La^{3+}$ doping originates from electron doping effects in addition to ionic size ones.

Oxygen Permeation Properties of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Mixed-conducting Membrane (혼합전도성 $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ 분리막의 산소투과 특성)

  • Lim, Kyoung-Tae;Cho, Tong-Lae;Lee, Kee-Sung;Woo, Sang-Kuk;Park, Kee-Bae;Kim, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.787-793
    • /
    • 2001
  • $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ membranes were fabricated by solid-state reaction. We investigated sintering behavior and oxygen permeation flux as a function of time-on-stream, temperature and upstream oxygen partial pressure. The oxygen was permeated at temperatures form 750$^{\circ}$C to 950$^{\circ}$C by mixed conducting through oxygen vacancy diffusion in the dense membrane. The oxygen permeation flux through the membrane were about 0.1ml/$cm^3{\cdot}$min at 850$^{\circ}$C. A constant time was required for reaching stable oxygen flux, and oxygen partial pressure affected the oxygen permeation fluxes.

  • PDF

Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method (Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.

Synthesis and Characterization of LSCF/CGO Composite Used as SOFC Cathode Materials (SOFC 용 LSCF/CGO 공기극의 제조 및 특성연구)

  • Park, Jae-Layng;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Shin, Dong-Ryul;Song, Rak-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.184-186
    • /
    • 2009
  • Composites of LSCF($La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ and CGO(gadolinium doped ceria) is an efficient candidate cathode material with CGO electrolytes. In this study, LSCF with exact perovskite structure was synthesized by using solid state reaction(SSR) method. The optimized temperature to synthesize $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ with rhombohedral structure. was $1100^{\circ}C$. The polarization resistance of the LSCF/CGO(50:50 wt.%) was smaller than those of other composite cathodes. The analysis of the EIS data of LSCF/CGO suggests that the diffusion and adsorption-desorption of oxygen can be the key process in the cathodic reaction of SOFC using LSCF/CGO as cathode material.

  • PDF

A Study on the Catalytic Characteristics of Oxygen Reduction in an Alkaline Fuel Cell II. Characterization of La0.6Sr0.4Co1-xFexO3 by using XRD, TG, and TPR (알칼리형 연료전지에서 산소환원에 미치는 촉매 특성 연구 II. XRD, TG, TPR를 이용한 La0.6Sr0.4Co1-xFexO3의 특성 분석)

  • Moon, Hyeung-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.554-564
    • /
    • 1996
  • Oxygen reduction in an alkaline fuel cell was studied by using perovskite of $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$(x=0.00, 0.01, 0.10, 0.20, 0.35, and 0.50) as an oxygen electrode catalyst. The changes in the catalytic properties as a function of Fe content were investigated by XRD, TG, and TPR. XRD patterns gave different lattice parameters of the catalysts. TG study revealed that Fe was so stabilized in the perovskite structure as to be hardly reduced even up to $900^{\circ}C$, and the amount of oxygen which was eliminated at high temperature increased with the fraction of Fe because Fe induced the increase of Co-O binding energy. From TPR study, ${\alpha}$-(low temperature peak) and ${\beta}$-(high temperature peak)states were observed. The bond strength of the ${\beta}$-species which was associated strongly with Co of the perovskite increased proportionally with the fraction of Fe. The ${\alpha}$-species, reversible oxygen, was the active species in the oxygen reduction. The ${\alpha}$-peak temperature which reflected the binding energy between Co and ${\alpha}$-state oxygen moved to lower temperature with the increase of lattice parameter of the catalytst due to the increase of Fe content. The decrease in the binding energy increased the activity in the oxygen reduction, but the decrease of ${\alpha}$-species with the increase of Fe content decreased the activity. The increase in the surface area with Fe content had little effect on the activity.

  • PDF

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

Crystal Structure and Magnetic Properties of Iron Doped La-Sr-Mn-O (철을 미량 치환한 La-Sr-Mn-O의 결정학적 및 자기적 특성 연구)

  • Ahn, Geun-Young;Shim, In-Bo;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.14-19
    • /
    • 2002
  • The iron-doped perovskite La$_{0.67}$Sr$_{0.33}$Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$compound has been studied by x-ray diffraction, Mossbauer spectroscopy, and vibrating sample magnetometry. The single phase of the polycrystalline La$_{0.67}$Sr$_{0.33}$Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$powder has been prepared by a waterbased solgel method. Crystalline La$_{0.67}$Sr$_{0.33}$Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$was a rombohedral structure with lattice parameters a$_{0}$=5.480 $AA$, $alpha$=60.259$^{circ}$. Mossbauer spectra of La$_{0.67}$Sr$_{0.3}$/Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$have been taken at various temperatures ranging from 20 to 400 K. As the temperature increases toward the Curie temperature, T$_{c}$=375 K, the Mossbauer spectra show line broadening and the difference between the 1,6 and 3,4 linewidths is caused by the anisotropic hyperfine field fluctuation. The anisotropic field fluctuation of +H (P$_{+}$=0.80) is greater than -H (P$_{-}$=0.20). We calculated that the anisotropy energy was 124.01 erg/cm$^3$for T=150 K which is associated with the large line broadening.

Temperature Dependence of Cr Impurity in La0.6Sr0.4Ti0.3Fe0.7O3-δ Coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ Ion Conducting Membrane for oxygen Separation (산소 분리를 위한 La0.6Sr0.4Ti0.3Fe0.7O3-δ가 코팅된 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 이온전도성 분리막에서 Cr 불순물의 온도 의존성)

  • Park, Yu Gang;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.11-16
    • /
    • 2019
  • $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$(LSTF) coated $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$(BSCF) membranes which has properties of high oxygen permeability and stability to $CO_2$ were applied to a bench scale apparatus to conduct oxygen permeation experiments. Also, the membranes of the laboratory and the bench scale device were divided into three regions according to the temperature gradient in the membrane reactor for comparative analysis. While oxygen permeation experiment were conducted up to $900^{\circ}C$, temperature dependence of Cr deposition was investigated. As a result, it was confirmed that the oxygen permeability was $2.37ml/min{\cdot}cm^2$, which was significantly lower than $3.79ml/min{\cdot}cm^2$ measured in the laboratory apparatus. It was found through XRD and SEM/EDS analysis that the decrease in oxygen permeability was originated from the deposition of gaseous Cr on the membrane surface released from the alloy material of the housing. In particular, a large amount of Cr was found in the medium temperature region.

Electrochemical properties of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$ cathodes for medium-temperature SOFC (중간온도형 고체산화물 연료전지의 양극재료로서 $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$의 전기화학특성)

  • Ryu Ji-H.;Jang Jong-H.;Lee Hee-Y.;Oh Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • For the purpose of finding new cathode materials for medium-temperature $(700\~800^{\circ}C)$ solid oxide fuel cells, $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3,\;(x=0.0\~0.5)$ are prepared, and their thermal stability and conductivity characteristics are investigated. Also, the cathodic activities are measured after the cathode layer being attached on CGO (cerium-gadolinium oxide) electrolyte disk. The X-ray analyses indicate that the materials prepared by calcining the citrate-gels at $800^{\circ}C$ have the orthorhombic perovskite structure without discernible impurities. The thermal stability of the undoped Co perovskite is so poor that it is decomposed to the individual binary oxide even at $1300^{\circ}C$. But the partially Fe-doped cobaltates exhibit a better thermal stability to retain their structural integrity up to $1400^{\circ}C$. The observation whereby both the undoped and Fe-doped cobaltates melt at ca. $1300^{\circ}C$ leads us to perform the electrode adhesion at <$1300^{\circ}C$. The cathodic activity of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3,\;(x=0.0\~0.5)$, electrodes is superior to $La_{0.9}Sr_{0.1}MnO_3$, among the samples of $x=0.0\~0.5$, the x=0.2 cathode shows the best activity for the oxygen reduction reaction. It is likely that the Fe-doping provides a better thermal stability to the materials but in turn imparts an inferior cathodic activity, such that the optimum trade-off is made at x=0.2 between the two factors. The total electrical conductivity and ion conductivity of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$, are measured to be 51 S/cm and $6.0\times10^{-4}S/cm\;at\;800^{\circ}C$, respectively. The conductivity values illustrate that the materials are a mixed conductor and the reaction sites can be expanded to the overall electrode surface, thereby providing a better cathodic activity than $La_{0.9}Sr_{0.1}MnO_3$.

[Mössbauer] Spectroscopic Study of La1/3Sr2/3FeO2.96 under the External Magnetic Field (산소결핍 페롭스카이트 La1/3Sr2/3FeO2.96의 외부 자기장 하에서의 Mössbauer분광학적 연구)

  • Yoon, Sung-Hyun;Jung, Jong-Yong
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.81-84
    • /
    • 2005
  • The origin for the charge disproportionation (CD) transition in polycrystalline $La_{1/3}Sr_{2/3}FeO_{2.96}$ was examined using X-ray diffraction and the external field $M\ddot{o}ssbauer$ssbauer spectroscopy. In order to see how the external magnetic field affects the CD state above its transition temperature, an external magnetic field of up to 6 T was applied either parallel or perpendicular to the $\gamma-ray$ direction with the sample temperature fixed at 225 K, which was above the CD transition temperature. Without an external magnetic field, a completely paramagnetic singlet was obtained in the temperature range of the averaged valence state above the transition temperature, which was interpreted as coming from the average valence $Fe^{3.6+}$. In the longitudinal geometry, a magnetic Zeeman with its intensity ratio 3:0:1:1:0:3 is superimposed to the central singlet. In the transverse geometry, however, the central singlet disappears and only a magnetic component with its intensity ratio 3:4:1:1:4:3 emerges. The existence of a singlet is understood as an evidence of the fast electron-transfer among Fe ions. Since the singlet still exists under the magnetic field, the application of an external field has little effect on the conduction mechanism of hopping electrons.