• Title/Summary/Keyword: $LaCl_3$

Search Result 109, Processing Time 0.02 seconds

Synthesis and Crystal Structure of a New Quaternary Chalcoantimonide: KLa2Sb3S9 and KSm2Sb3Se8

  • Kim, Sung-Jin;Park, Sun-Ju;Yim, Sun-Ah
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.485-490
    • /
    • 2004
  • Silver-needle shaped crystals of $KLa_2Sb_3S_9$ from $K_2S_x$ flux and $KSm_2Sb_3Se_8$ from NaCl/KCl flux reactions were obtained and their crystal structures were determined by the single crystal X-ray diffraction method. $KLa_2Sb_3S_9$ crystallizes in the orthorhombic noncentrosymmetric space group $P2_12_12_1$ (No.19) with a unit cell of a = 4.220(3) ${\AA}$, b = 24.145(2) ${\AA}$, c = 14.757(5) ${\AA}$ and Z = 4. $KSm_2Sb_3Se_8$ crystallizes in the orthorhombic space group Pnma (No.62) with a unit cell of a = 16.719(3) ${\AA}$, b = 4.1236(8) ${\AA}$, c = 22.151(4) ${\AA}$ and Z = 4. Both structures have three-dimensional tunnel frameworks filled with $K^+$ ions. $KSm_2Sb_3Se_8$ is an ordered version of $ALn_{1{\pm}X}B_i{4{\pm}X}S_8$, and it is made up of NaCl-type and $Gd_2S_3$-type fragments. $KLa_2Sb_3S_9$ also contains building fragments similar to those of $KSm_2Sb_3Se_8$, however, there are chalcogen-chalcogen bonds in the $Gd_2S_3$-type fragment. The formula of $KLa_2Sb_3S_9$ can be described as $(K^+ )(La^{3+})_2(Sb^{3+})^3(S^{2-})_7(S_2^{2-})$.

Studies on DC Polarograms of Some Rare Earth Elements (몇가지 희토류원소의 DC 폴라로그램에 관한 연구)

  • Cha, Ki-Won;Kim, Jea-Kyun;Kim, Sung-Il;Kim, Kyung-Whan
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.206-211
    • /
    • 2003
  • The DC polarograms of some rare earth elements have been investigated in various pH solution and electrolytes. Samarium ion has two well-defined reduction waves at -1.75 V and -1.95 V in 0.1 M NaCl solution and those are a diffusion controlled in nature. Europium and ytterbium ions give also two step reduction waves at -0.75 V and -1.95 V for europium and -1.45 V and -2.00 V for ytterium in $(C_2H_5)_4NCl$ solution. On the other hand, lantanium and neodium ions show a single reduction wave at -1.75 V. The differences of half wave potentials between europium, ytterium and samarium ions make it possible to determine each ions in the mixed solution sponteniously. In case of europium ion, the stability constants for the complexs of $Eu^{3+}$-EDTA and $Eu^{3+}$-DTPA are evaluated.

Sub-Micro Molar Monitoring of La3+ by a Novel Lanthanum PVC-Based Membrane Sensor Based on 3-Hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Yousefian, Nasrin;Faridbod, Farnoush;Adib, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1581-1586
    • /
    • 2006
  • A La (III) ion-selective membrane sensor has been fabricated from poly vinyl chloride (PVC) matrix membrane, containing 3-hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide (HPMN) as a neutral carrier, potassium tetrakis (p-chlorophenyl) borate (KTpClPB) as an anionic excluder and ortho-nitrophenyloctyl ether (NPOE) as a plasticizing solvent mediator. The effects of membrane composition and pH as well as the influence of the anionic additive on the response properties were investigated. The sensor with 30% PVC, 62% solvent mediator, 6% ionophore and 2% anionic additive, shows the best potentiometric response characteristics. It displays a Nernstian behavior (19.2 mV per decade) across the range of $1.0{\times}10^{-2}-1.0{\times}10^{-7}$ M. The detection limit of the electrode is $7.0{\times}10^{-8}$ M ($\sim$10 ng/mL) and the response time is 15 s from $1.0{\times}10^{-2}$ up to $1.0{\times}10^{-4} $M and 30 s in the range of $1.0 {\times}10^{-5}-1.0{\times}10^{-7}$ M. The sensor can be used in the pH values of 3.0-9.0 for about seven weeks. The membrane sensor was used as an indicator electrode in the potentiometric titration of lanthanum ions with EDTA. It was successfully applied to the lanthanum determination in some mouth wash preparations.

Analysis of the petrological characteristics and deterioration phenomena of the rocks consisting the Gwangtonggyo(bridge) on the Cheonggyecheon(river) (광통교 구성암석의 석질 및 훼손양상 분석 연구)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.39-56
    • /
    • 2005
  • The Gwangtonggyo(bridge) on the Cheonggyecheon(river) is mainly composed of biotite granite with coarse grain. The rock consists mainly of quartz, plagioclase, microcline, orthoclase and biotite with lesser amount of muscovite, sericite and chlorite. Muscovite and sericite may be formed from feldspars and chlorite from biotite by alteration(including weathering). These rocks are relatively deteriorated by weathering, polluted water running the river and heavy traffic. The main phenomena of damages are surface exfoliation, grain separation, deceleration, pollution of organic and heavy chemical elements, cracks and breakage. These phenomena have been analyzed by polarized microscope, XRD and SEM/EDX. The analyzed results show organic pollution and secondarily formed gypsum and apatite on the rock surface and micro-pores. NaCl and $CaCO_3$ as rock salt and calcite probably may be formed secondarily in some points. Also heavy chemical elements such as Cr, Pb, Pd, W, La, Zn and Nd are polluted in some samples. The contacts between rocks are generally breakdown in small scale or cracks are developed due to mainly load and vibration shock of heavy traffic.

  • PDF

A study on dehydration of rare earth chloride hydrate (염화 희토류 수화물의 탈수화에 관한 연구)

  • Lee, Tae-Kyo;Cho, Yong-Zun;Eun, Hee-Chul;Son, Sung-Mo;Kim, In-Tae;Hwang, Taek-Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.125-132
    • /
    • 2012
  • The dehydration schemes of rare earth (La, Ce, Nd, Pr, Sm. Eu, Gd, Y) chloride hydrates was investigated by using a dehydration apparatus. To prevent the formation of the rare earth oxychlorides, the operation temperature was changed step by step ($80{\rightarrow}150{\rightarrow}230^{\circ}C$) based on the TGA (thermo-gravimetric analysis) results of the rare earth chloride hydrates. A vacuum pump and preheated Ar gas were used to effectively remove the evaporated moisture and maintain an inert condition in the dehydration apparatus. The dehydration temperature of the rare earth chloride hydrate was increased when the atomic number of the rare earth nuclide was increased. The content of the moisture in the rare earth chloride hydrate was decreased below 10% in the dehydration apparatus.

Effect of Copper Ions on Over-Acidification of kimchi (구리 이온의 김치산패 억제작용에 관한 연구)

  • 채경연;유양자;경규항;박세원;김연순
    • Korean journal of food and cookery science
    • /
    • v.18 no.1
    • /
    • pp.87-93
    • /
    • 2002
  • Effect of copper ions (Cu$\^$+/ and Cu$\^$2+/) on the fermentation of kimchi, especially on their effect on the prevention of over-acidification of kimchi, was investigated. The effect of Cu$\^$2+/ ion on the growth of individual lactic acid bacterium originally isolated from kimchi was also investigated. The addition of Cu$\^$+/($\geq$4.0mM) or Cu$\^$2+/($\geq$3.0mM) ions in kimchi effectively inhibited growth of lactic acid bacteria and maintained a titratable acidity of less than 1.0% for a periods of 14 days. Leuconostoc mesenteroides significantly decreased at the 10th day of fermentation in control kimchi, whereas the group with Cu$\^$+/ and Cu$\^$2+/ showed 10$\^$5/-10$\^$6/ CFU/ml at the 14th day of fermentation. This indicates that the addition of Cu$\^$+/ and Cu$\^$2+/ inhibited the production of excessive acids by inhibiting lactic acid bacteria, and allowed Leu. mesenteroides stay alive longer. Fe$\^$2+/ and SO$_4$$\^$2-/ ions did not have any effect on the fermentation of kimchi. Cu$\^$2+/ inhibited growth of all lactic acid bacteria tested, such as Leu. mesenteroides 6, Streptococcus faecalis 12, Lactobacillus plantarum 14, Lac. brevis 15, Leu. mesenteroides LA 10, and Lac. plantarum LA 97.

Indoor Air Quality Pollution of PM2.5 and Associated Trace Elements Affected by Environmental Tobacco Smoke (환경담배연기로 인한 실내공기 중 PM2.5 및 미량성분 오염 특성)

  • Lim, Jong-Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.317-324
    • /
    • 2014
  • Environmental tobacco smoke (ETS) samples were collected separately in mainstream and side-stream smoke using a self-designed smoking machine, and a total 40 of PM2.5 was collected with low volume air sampler at indoor environments with and without ETS in Daejeon, Korea. About 20 trace elements including toxic metals like As, Cr, Mn, Se, V, and Zn were determined in PM2.5 and ETS samples by instrumental neutron activation analysis (INAA). It is found that the emission factors of K, Cl, Na, and Al were much higher than those of toxic elements for both mainstream and side-stream smoke. The average concentration of PM2.5 was enriched by 1.5 times at smoking area ($58.7{\pm}18.1{\mu}g/m^3$) than at smoking free area ($38.6{\pm}12.7{\mu}g/m^3$). The concentration ratio of each element between smoking and smoking free area were ranged from 1.1 to 6.0 except Cu (1.0); especially, Ce (6.0), La (5.2), K (2.3), and Co (2.0) showed higher ratio, which suggests that the ETS is one of the possible increasing factors of PM2.5 and elemental concentration at indoor environment.

Structure and optical properties of vapor grown In2O3: Ga nano-/microcrystals

  • Sanchez, Diego Leon;Ramon, Jesus Alberto Ramos;Zaldivar, Manuel Herrera;Pal, Umapada;Rosas, Efrain Rubio
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.81-96
    • /
    • 2015
  • Octahedral shaped single crystalline undoped and Ga-doped indium oxide nano-and microcrystals were fabricated using vapor-solid growth process. Effects of Ga doping on the crystallinity, defect structure, and optical properties of the nano-/microstructures have been studied using scanning electron microscopy, microRaman spectroscopy, transmission electron microscopy and cathodoluminescence spectroscopy. It has been observed that incorporation of Ga does not affect the morphology of $In_2O_3$ structures due to its smaller ionic radius, and similar oxidation state as that of In. However, incorporation of Ga in high concentration (~3.31 atom %) causes lattice compression, reduces optical band gap and defect induced CL emissions of $In_2O_3$ nano-/microcrystals. The single crystalline Ga-doped, $In_2O_3$ nano-/microcrystals with low defect contents are promising for optoelectronic applications.

Environmental Geochemistry and Heavy Matel Contamination of Ground and Surface Water, Soil and Sediment at the Kongjujuil Mine Creek, Korea (공주제일광산 수계에 분포하는 지하수, 지표수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.611-631
    • /
    • 1999
  • Enviromental geochemisty and heary metal contamination at the Kongjueil mine creek were underaken on the basis of physicohemical properties and mineralogy for various kinds of water (surface, mine and ground water),soil, precipitate and sediment collected of April and December in 1998. Hydrgeochemical composition of the water samples are characterized by relatively significant enricant of Ca+Na, alkiali ions $NO_3$ and Cl inground and surfore water, wheras the mine waters are relatively eneripheral water of the mining creek have the characteristics of the (Ca+Mg)-$(HCO_3+SO_4)$type. The pH of the mine water is high acidity (3.24)and high EC (613$\mu$S/cm)compared with those of surface and ground water. The range of $\delta$D and $\delta^{18}O$ values (relative to SMOW) in the waters are shpwn in -50.2 to -61.6% and -7.0 to -8.6$\textperthousand$(d value=5.8 to 8.7). Using computer program, saturation index of albite, calcite, dolomite in mine water are nearly saturated. The gibbiste, kaolinite and smectite are superaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that weathing of silicate minerals may be stable kaolinite owing to the continuous water-rock reaction. Geochemical modeling showed that mostly toxic heavy metals may exist larfely in the from of metal-sulfate $(MSO_4\;^2)$and free metal $(M^{2+})$ in nmine water. These metals in the ground and surface water could be formed of $CO_3$ and OH complex ions. The average enrichment indices of water samples are 2.72 of the groundwater, 2.26 of the surface water and 14.15 of the acid mine water, normalizing by surface water composition at the non-mining creek, repectively. Characteristics of some major, minor and rate earth elements (Al/Na, K/Na, V/Ni, Cr/V, Ni/Co, La/Ce, Th/Yb, $La_N/Yb_N$, Co/Th, La/Sc and Sc/Th) in soil and sediment are revealed a narrow range and homogeneous compositions may be explained by acidic to intermediate igneous rocks. And these suggested that sediment source of host granitic gneiss colud be due to rocks of high grade metamorphism originated by sedimentary rocks. Maximum concentrations of environmentally toxic elements in sediment and soil are Fe=53.80 wt.% As=660, Cd=4, Cr=175, Cu=158, Mn=1010, Pb=2933, Sb=4 and Zn=3740 ppm, and extremely high concentrations are found are found in the subsurface soil near the ore dump and precipitates. Normalizing by composition of host granitic gneiss, the average enerichment indices are 3.72 of the sediments, 3.48 of the soils, 10.40 of the precipitates of acid mine drainage and 6.25 of the soils near the main adit. The level of enerichment was very severe in mining drainage sediments, while it was not so great in the soils. mineral composition of soil and sediment near the mining area were partly variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. reddish variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. Reddish brown precipitation mineral in the acid mine drainage identifies by schwertmanite. From the separated mineralgy, soil and sediment are composed of some pyrite, arsenopyite, chalcopyrite, sphalerite, galena, malachite, goethite and various kinds of hydroxied minerals.

  • PDF

Synthesis and pH-Dependent Micellization of Sulfonamide-Modified Diblock Copolymer

  • Pal Ravindra R.;Kim Min Sang;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.467-476
    • /
    • 2005
  • The main objective of this study was to develop and characterize pH-sensitive biodegradable polymeric materials. For pH-sensitivity, we employed three kinds of moieties: 2-amino-3-(lH-imidazol-4-yl)-propionic acid (H), N-[4-( 4,6-dimethyl-pyrimidin-2ylsulfamoyl)-phenyl]succinamic acid (SM), and 2- {3-[ 4-( 4,6-dimethyl-pyrim­idin- 2-ylsulfamoyl)-phenylcarbamoyl]-propionylamino} -3-(3 H - imidazol-4-yl)-propionic acid (SH). The pH -sensitive diblock copolymers were synthesized by ring opening polymerization and coupling reaction from poly(ethylene glycol) (MPEG), $\varepsilon$-caprolactone (CL), D,L-lactide (LA) and pH-sensitive moieties. The pH-sensitive SH molecule was synthesized in a two-step reaction. The first step involved the synthesis of SHM, a methyl ester derivative of SH, by coupling reaction of SM and L-histidine methyl ester dihydrochloride, whereas the second step involved the hydrolysis of the same. The synthesized SM, SHM and SH molecules were characterized by FTIR, $^{1}H$-NMR and $^{13}C$-NMR spectroscopy, whereas diblock copolymers and pH-sensitive diblock copolymer were characterized by $^{1}H$-NMR and GPC analysis. The critical micelle concentrations were determined at various pH conditions by fluorescence technique using pyrene as a probe. The micellization and demicellization studies of pH-sensitive diblock copolymers were also done at different pH conditions. The pH-sensitivity was further established by acid-based titration and DLS analysis.