DOI QR코드

DOI QR Code

Sub-Micro Molar Monitoring of La3+ by a Novel Lanthanum PVC-Based Membrane Sensor Based on 3-Hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide

  • Ganjali, Mohammad Reza (Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran) ;
  • Norouzi, Parviz (Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran) ;
  • Yousefian, Nasrin (Department of Chemistry, North branch, Islamic Azad University) ;
  • Faridbod, Farnoush (Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran) ;
  • Adib, Mehdi (Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran)
  • 발행 : 2006.10.20

초록

A La (III) ion-selective membrane sensor has been fabricated from poly vinyl chloride (PVC) matrix membrane, containing 3-hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide (HPMN) as a neutral carrier, potassium tetrakis (p-chlorophenyl) borate (KTpClPB) as an anionic excluder and ortho-nitrophenyloctyl ether (NPOE) as a plasticizing solvent mediator. The effects of membrane composition and pH as well as the influence of the anionic additive on the response properties were investigated. The sensor with 30% PVC, 62% solvent mediator, 6% ionophore and 2% anionic additive, shows the best potentiometric response characteristics. It displays a Nernstian behavior (19.2 mV per decade) across the range of $1.0{\times}10^{-2}-1.0{\times}10^{-7}$ M. The detection limit of the electrode is $7.0{\times}10^{-8}$ M ($\sim$10 ng/mL) and the response time is 15 s from $1.0{\times}10^{-2}$ up to $1.0{\times}10^{-4} $M and 30 s in the range of $1.0 {\times}10^{-5}-1.0{\times}10^{-7}$ M. The sensor can be used in the pH values of 3.0-9.0 for about seven weeks. The membrane sensor was used as an indicator electrode in the potentiometric titration of lanthanum ions with EDTA. It was successfully applied to the lanthanum determination in some mouth wash preparations.

키워드

참고문헌

  1. Haiduc, I.; Silvestru, C. Coord. Chem. Rev. 1990, 99, 253 https://doi.org/10.1016/0010-8545(90)80065-2
  2. Yongxing, W.; Xiaorong, W.; Zichum, H. Bull. Environ. Contamin. Toxicol. 2000, 64, 611 https://doi.org/10.1007/s001280000047
  3. Zheng, H. L.; Zhao, Z. Q.; Zhang, C. C.; Feang, G. Z.; Ke, Z. L.; Su, M. G. BioMtetals 2000, 13, 157 https://doi.org/10.1023/A:1009232821175
  4. Hrdlicka, A.; Havel, J.; Moreno, C.; Valiente, M. Anal. Sci. 1991, 7, 925
  5. Houk, R. S.; Fassel, V. A.; Reach, G. D.; Svec, H. J. Anal. Chem. 1980, 52, 2283 https://doi.org/10.1021/ac50064a012
  6. Mazzucotelli, A.; DePaz, F.; Magi, E.; Frache, B. Anal. Sci. 1992, 8, 189 https://doi.org/10.2116/analsci.8.189
  7. Masuda, A.; Nomura, N.; Tanaka, T. Geockim. Cosmochim. Arla 1973, 37, 239 https://doi.org/10.1016/0016-7037(73)90131-2
  8. Marsh, S. F. Anal. Chem. 1967, 39, 641 https://doi.org/10.1021/ac60250a019
  9. Cornell, D. H. Pure Appl. Chem. 1993, 65, 2453 https://doi.org/10.1351/pac199365122453
  10. Ganjali, M. R.; Kiani-Anbuhi, R.; Shamsipur, M.; Poursaberi, T.; Salavati-Niasari, M.; Talebpour, Z.; Emami, M. Electroanalysis 2004, 16, 1002 https://doi.org/10.1002/elan.200302899
  11. Gupta, V. K.; Jain, S.; Chandra, S. Anal. Chim. Acta 2003, 486, 199 https://doi.org/10.1016/S0003-2670(03)00506-3
  12. Mittal, S. K.; Kumar, S. K. A.; Sharma, H. K. Talanta 2004, 62, 81 https://doi.org/10.1016/S0039-9140(03)00417-X
  13. Shamsipur, M.; Yousefi, M.; Hosseini, M.; Ganjali, M. R. Anal. Chem. 2002, 74, 5538 https://doi.org/10.1021/ac0110451
  14. Ganjali, M. R.; Qomi, M.; Daftari, A.; Salavati-Niassari, M.; Rabbani, M.; Norouzi, P. Sens. Actuators B 2004, 98, 92 https://doi.org/10.1016/j.snb.2003.09.028
  15. Ito, T.; Goto, C.; Noguchi, K. Anal. Chim. Acta 2001, 443, 41 https://doi.org/10.1016/S0003-2670(01)01192-8
  16. Khalil, S. Anal. Lett. 2003, 36, 1335 https://doi.org/10.1081/AL-120021090
  17. Ganjali, M. R.; Daftari, A.; Rezapour, M.; Poursaberi, T.; Haghgoo, S. Talanta 2003, 59, 613 https://doi.org/10.1016/S0039-9140(02)00573-8
  18. Ito, T.; Coto, C. J. Trace. Microprobe Tech. 2001, 19, 601 https://doi.org/10.1081/TMA-100107595
  19. Ganjali, M. R.; Rahimi, M.; Maddah, B.; Moghimi, A.; Borhany, S. Anal. Sci. 2004, 20, 1427 https://doi.org/10.2116/analsci.20.1427
  20. Ganjali, M. R.; Rasoolipour, S.; Rezapour, M.; Norouzi, P.; Tajarodi, A.; Hanifehpour, Y. Electroanalysis 2005, 17, 1534 https://doi.org/10.1002/elan.200403251
  21. Ganjali, M. R.; Mirnaghi, F. S.; Norouzi, P.; Adib, M. Sen. Actuators B 2006, 115, 374 https://doi.org/10.1016/j.snb.2005.09.020
  22. Ganjali, M. R.; Rezapour, M.; Pourjavid, M. R.; Haghgoo, S. Anal. Sci. 2004, 20, 1007 https://doi.org/10.2116/analsci.20.1007
  23. Ganjali, M. R.; Norouzi, P.; Tamaddon, A.; Adib, M. Sen. Actuators B 2006, 114, 855 https://doi.org/10.1016/j.snb.2005.08.004
  24. Ganjali, M. R.; Zamani, H. A.; Rajadzadeh, Gh.; Ganjali, M. R.; Mola Khatami, S. Electroanalysis 2005, 17, 2260 https://doi.org/10.1002/elan.200503356
  25. Ganjali, M. R.; Tahami, M.; Shamsipur, M.; Poursaberi, T.; Haghgoo, S.; Hosseini, M. Electroanalysis 2003, 15, 1038 https://doi.org/10.1002/elan.200390125
  26. Ganjali, M. R.; Rezapour, M.; Norouzi, P.; Salavati-Niasari, M. Electroanalysis 2005, 17, 2032 https://doi.org/10.1002/elan.200503324
  27. Ganjali, M. R.; Emami, M.; Salavati-Niasari, M. Bull. Korean Chem. Soc. 2002, 23, 1394 https://doi.org/10.5012/bkcs.2002.23.10.1394
  28. Ganjali, M. R.; Hosseini, M.; Salavati-Niasari, M.; Poursaberi, T.; Shamsipur, M.; Javanbakht, M.; Hashemi, O. R. Electroanalysis 2002, 14, 526 https://doi.org/10.1002/1521-4109(200204)14:7/8<526::AID-ELAN526>3.0.CO;2-O
  29. Ganjali, M. R.; Zamani, H. A.; Norouzi, P.; Adib, M.; Rezapour, M.; Aceedy, M. Bull. Korean Chem. Soc. 2005, 26, 579 https://doi.org/10.5012/bkcs.2005.26.4.579
  30. Ganjali, M. R.; Babaei, L. H.; Taghvaei-Ganjali, S.; Modjallal, A.; Shamsipur, M.; Hosseini, M.; Javanbakht, M. Bull. Korean Chem. Soc. 2004, 25, 177 https://doi.org/10.5012/bkcs.2004.25.2.177
  31. Shamsipur, M.; Ganjali, M. R.; Rouhollahi, A. Anal. Sci. 2001, 17, 935 https://doi.org/10.2116/analsci.17.935
  32. Ganjali, M. R.; Ghorbani, M.; Daftari, A.; Norouzi, P.; Pirelahi, H.; Dargahani, H. D. Bull. Korean Chem. Soc. 2004, 25, 172 https://doi.org/10.5012/bkcs.2004.25.2.172
  33. Ganjali, M. R.; Pourjavid, M. R.; Mouradzadegun, K.; Hosseini, M.; Mizani, F. Bull. Korean Chem. Soc. 2003, 24, 1585 https://doi.org/10.5012/bkcs.2003.24.11.1585
  34. Ganjali, M. R.; Norouzi, P.; Shirvani, S.; Salavati-Niasari, M. Bull. Korean Chem. Soc. 2005, 26, 1738 https://doi.org/10.5012/bkcs.2005.26.11.1738
  35. Ganjali, M. R.; Rasoolipour, S.; Rezapour, M.; Norouzi, P.; Adib, M. Electrochem. Commun. 2005, 7, 989 https://doi.org/10.1016/j.elecom.2005.07.006
  36. Ganjali, M. R.; Norouzi, P.; Shirvani, S.; Salavati-Niasari, M. Bull. Korean Chem. Soc. 2005, 16, 11
  37. Ganjali, M. R.; Rouhollahi, A.; Mardan, A. R.; Shamsipur, M. J. Chem. Soc. Faraday Trans. 1998, 94, 1959 https://doi.org/10.1039/a707269d
  38. Bakker, E.; Bühlmann, P.; Pretsch, E. Chem. Rev. 1997, 97, 3083 https://doi.org/10.1021/cr940394a
  39. Ganjali, M. R.; Poursaberi, T.; Babaei, L. H. A.; Rouhani, M.; Yousefi, M.; Karegar-Razi, M.; Moghimi, A.; Aghabozorg, H.; Shamsipur, M. Anal. Chim. Acta 2001, 440, 81 https://doi.org/10.1016/S0003-2670(01)01051-0
  40. Bakker, E.; Buhlmann, P.; Pretsch, E. Electroanalysis 1999, 11, 915 https://doi.org/10.1002/(SICI)1521-4109(199909)11:13<915::AID-ELAN915>3.0.CO;2-J
  41. Ammann, E.; Pretsch, P.; Simon, W.; Lindner, E.; Bezegh, A.; Pungor, E. Anal. Chim. Acta 1991, 171, 1380
  42. Eugster, R.; Gehrig, P. M.; Morf, W. E.; Spichiger, U.; Simon, W. Anal. Chem. 1990, 63, 2285 https://doi.org/10.1021/ac00020a017
  43. Rosatzin, T.; Bakker, E.; Suzuki, K.; Simon, W. Anal. Chim. Acta 1993, 280, 197 https://doi.org/10.1016/0003-2670(93)85122-Z
  44. Umezawa, Y.; Umezawa, K.; Sato, H. Pure Appl. Chem. 1995, 67, 507 https://doi.org/10.1351/pac199567030507
  45. Buck, P. R.; Lindner, E. Pure & Appl. Chem. 1994, 66, 2527 https://doi.org/10.1351/pac199466122527

피인용 문헌

  1. Lanthanide Recognition: Determination of Thulium(III) Ions in Presence of Other Rare Earth Elements by a Thulium(III) Sensor Based on 4-Methyl-1,2-Bis(2-Pyridinecarboxamido)benzene as a Sensing Material vol.41, pp.13, 2008, https://doi.org/10.1080/00032710802350484
  2. Lanthanide Recognition: Development of an Asymetric Gadolinium Microsensor Based on N-(2-pyridyl)-N′-(4-nitrophenyl)thiourea vol.41, pp.16, 2008, https://doi.org/10.1080/00032710802440525
  3. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors vol.8, pp.3, 2008, https://doi.org/10.3390/s8031645
  4. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade vol.8, pp.4, 2008, https://doi.org/10.3390/s8042331
  5. Electrochemical Sensors Containing Schiff Bases and their Transition Metal Complexes to Detect Analytes of Forensic, Pharmaceutical and Environmental Interest. A Review pp.1547-6510, 2019, https://doi.org/10.1080/10408347.2018.1561242
  6. Graphite disk Lanthanum(III)-selective electrode based on Kryptofix-22DD vol.99, pp.14, 2006, https://doi.org/10.1080/03067319.2019.1625338
  7. Discovery of an Orally Efficacious MYC Inhibitor for Liver Cancer Using a GNMT-Based High-Throughput Screening System and Structure-Activity Relationship Analysis vol.64, pp.13, 2021, https://doi.org/10.1021/acs.jmedchem.1c00093