• Title/Summary/Keyword: $L_k$-operator

Search Result 328, Processing Time 0.024 seconds

SOME SYMMETRY PRESERVING TRANSFORMATION IN POPULATION GENETICS

  • Choi, Won
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.757-762
    • /
    • 2009
  • In allelic model $X\;=\;(x_1,\;x_2,\;{\cdots},\;x_d)$, $$M_f(t)\;=\;f(p(t))\;-\;{\int}^t_0\;Lf(p(t))ds$$ is a P-martingale for diffusion operator L under the certain conditions. We can also obtain a new diffusion operator $L^*$ for diffusion coefficient and we prove that unique solution for $L^*$-martingale problem exists. In this note, we define new symmetric preserving transformation. Uniqueness for martingale problem and symmetric property will be proved.

  • PDF

COMPACT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.447-452
    • /
    • 2005
  • Given operators X and Y on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. Let L be a subspace lattice acting on a separable complex Hilbert space H and Alg L be a tridiagonal algebra. Let X = $(x_{ij})\;and\;Y\;=\;(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a compact operator A = $(x_{ij})$ in AlgL such that AX = Y. (2) There is a sequence {$\alpha_n$} in $\mathbb{C}$ such that {$\alpha_n$} converges to zero and $$y_1\;_j=\alpha_1x_1\;_j+\alpha_2x_2\;_j\;y_{2k}\;_j=\alpha_{4k-1}x_{2k\;j}\;y_{2k+1\;j}=\alpha_{4k}x_{2k\;j}+\alpha_{4k+1}x_{2k+1\;j}+\alpha_{4k+2}x_{2k+2\;j\;for\;all\;k\;\epsilon\;\mathbb{N}$$.

CERTAIN MAXIMAL OPERATOR AND ITS WEAK TYPE $L^1$($R^n$)-ESTIMATE

  • Kim, Yong-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.4
    • /
    • pp.621-626
    • /
    • 2001
  • Let { $A_{>o}$ t= exp(M log t)} $_{t}$ be a dilation group where M is a real n$\times$n matrix whose eigenvalues has strictly positive real part, and let $\rho$be an $A_{t}$ -homogeneous distance function defined on ( $R^{n}$ ). Suppose that K is a function defined on ( $R^{n}$ ) such that /K(x)/$\leq$ (No Abstract.see full/text) for a decreasing function defined on (t) on R+ satisfying where wo(x)=│log│log (x)ll. For f$\in$ $L_{1}$ ( $R^{n}$ ), define f(x)=sup t>0 Kt*f(x)=t-v K(Al/tx) and v is the trace of M. Then we show that \ulcorner is a bounded operator of $L_{-{1}( $R^{n}$ ) into $L^1$,$\infty$( $R^{n}$).

  • PDF

ISOMORPHISMS OF CERTAIN TRIDIAGONAL ALGEBRAS

  • Choi, Taeg-Young;Kim, Si-Ju
    • The Pure and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.49-60
    • /
    • 2000
  • We will characterize isomorphisms from the adjoint of a certain tridiag-onal algebra $AlgL_{2n}$ onto $AlgL_{2n}$. In this paper the following are proved: A map $\Phi{\;}:{\;}(AlgL_{2n})^{*}{\;}{\longrightarrow}{\;}AlgL_{2n}$ is an isomorphism if and only if there exists an operator S in $AlgL_{2n}$ with all diagonal entries are 1 and an invertible backward diagonal operator B such that ${\Phi}(A){\;}={\;}SBAB^{-1}S^{-1}$.

  • PDF

INVERTIBLE INTERPOLATION ON AX = Y IN ALGL

  • Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.14 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i=Y_i$, for i = 1,2,...,n. In this article, we showed the following: Let L, be a subspace lattice on a Hilbert space H and let X and Y be operators in B(H). Then the following are equivalent: (1) $$sup\{\frac{{\parallel}E^{\bot}Yf{\parallel}}{{\overline}{\parallel}E^{\bot}Xf{\parallel}}\;:\;f{\epsilon}H,\;E{\epsilon}L}\}\;<\;{\infty},\;sup\{\frac{{\parallel}Xf{\parallel}}{{\overline}{\parallel}Yf{\parallel}}\;:\;f{\epsilon}H\}\;<\;{\infty}$$ and $\bar{range\;X}=H=\bar{range\;Y}$. (2) There exists an invertible operator A in AlgL such that AX=Y.

  • PDF

SELF-ADJOINT INTERPOLATION PROBLEMS IN ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.387-395
    • /
    • 2004
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{i}\;=\;Y_{i}$, for i = 1,2,...,n. In this article, we showed the following: Let H be a Hilbert space and let L be a subspace lattice on H. Let X and Y be operators acting on H. Assume that range(X) is dense in H. Then the following statements are equivalent: (1) There exists an operator A in AlgL such that AX = Y, $A^{*}$ = A and every E in L reduces A. (2) sup ${\frac{$\mid$$\mid${\sum_{i=1}}^n\;E_iYf_i$\mid$$\mid$}{$\mid$$\mid${\sum_{i=1}}^n\;E_iXf_i$\mid$$\mid$}$:n{\epsilon}N,f_i{\epsilon}H\;and\;E_i{\epsilon}L}\;<\;{\infty}$ and = for all E in L and all f, g in H.

SELF-ADJOINT INTERPOLATION ON Ax = y IN ALG$\cal{L}$

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.981-986
    • /
    • 2011
  • Given vectors x and y in a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equations $Tx_i=y_i$, for i = 1, 2, ${\cdots}$, n. In this paper the following is proved : Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE=EP_x$ for each $E{\in}\cal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\cal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and $A=A^*$. (2) sup $sup\;\{\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}\;:\;E\;{\in}\;{\cal{L}}\}$ < ${\infty}$, $y\;{\in}\;sp(x)$ and < x, y >=< y, x >.

LITTLE HANKEL OPERATORS ON WEIGHTED BLOCH SPACES IN Cn

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.469-479
    • /
    • 2003
  • Let B be the open unit ball in $C^{n}$ and ${\mu}_{q}$(q > -1) the Lebesgue measure such that ${\mu}_{q}$(B) = 1. Let ${L_{a,q}}^2$ be the subspace of ${L^2(B,D{\mu}_q)$ consisting of analytic functions, and let $\overline{{L_{a,q}}^2}$ be the subspace of ${L^2(B,D{\mu}_q)$) consisting of conjugate analytic functions. Let $\bar{P}$ be the orthogonal projection from ${L^2(B,D{\mu}_q)$ into $\overline{{L_{a,q}}^2}$. The little Hankel operator ${h_{\varphi}}^{q}\;:\;{L_{a,q}}^2\;{\rightarrow}\;{\overline}{{L_{a,q}}^2}$ is defined by ${h_{\varphi}}^{q}(\cdot)\;=\;{\bar{P}}({\varphi}{\cdot})$. In this paper, we will find the necessary and sufficient condition that the little Hankel operator ${h_{\varphi}}^{q}$ is bounded(or compact).

WEAKLY WELL-DECOMPOSABLE OPERATORS AND AUTOMATIC CONTINUITY

  • Cho, Tae-Geun;Han, Hyuk
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.347-365
    • /
    • 1996
  • Let X and Y be Banach spaces and consider a linear operator $\theta : X \to Y$. The basic automatic continuity problem is to derive the continuity of $\theta$ from some prescribed algebraic conditions. For example, if $\theta : X \to Y$ is a linear operator intertwining with $T \in L(X)$ and $S \in L(Y)$, one may look for algebraic conditions on T and S which force $\theta$ to be continuous.

  • PDF

A NOTE ON SEMI-SELFDECOMPOSABILITY AND OPERATOR SEMI-STABILITY IN SUBORDINATION

  • Choi, Gyeong-Suk;Kim, Yun-Kyong;Joo, Sang-Yeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.483-490
    • /
    • 2010
  • Some results on inheritance of operator semi-selfdecomposability and its decreasing subclass property from subordinator to subordinated in subordination of a L$\acute{e}$evy process are given. A main result is an extension of results of [5] to semi-selfdecomposable subordinator. Its consequence is discussed.