• 제목/요약/키워드: $L_k$-finite-type hypersurface

검색결과 4건 처리시간 0.021초

HYPERSURFACES IN 𝕊4 THAT ARE OF Lk-2-TYPE

  • Lucas, Pascual;Ramirez-Ospina, Hector-Fabian
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.885-902
    • /
    • 2016
  • In this paper we begin the study of $L_k$-2-type hypersurfaces of a hypersphere ${\mathbb{S}}^{n+1}{\subset}{\mathbb{R}}^{n+2}$ for $k{\geq}1$ Let ${\psi}:M^3{\rightarrow}{\mathbb{S}}^4$ be an orientable $H_k$-hypersurface, which is not an open portion of a hypersphere. Then $M^3$ is of $L_k$-2-type if and only if $M^3$ is a Clifford tori ${\mathbb{S}}^1(r_1){\times}{\mathbb{S}}^2(r_2)$, $r^2_1+r^2_2=1$, for appropriate radii, or a tube $T^r(V^2)$ of appropriate constant radius r around the Veronese embedding of the real projective plane ${\mathbb{R}}P^2({\sqrt{3}})$.

ON SOME L1-FINITE TYPE (HYPER)SURFACES IN ℝn+1

  • Kashani, Seyed Mohammad Bagher
    • 대한수학회보
    • /
    • 제46권1호
    • /
    • pp.35-43
    • /
    • 2009
  • We say that an isometric immersed hypersurface x : $M^n\;{\rightarrow}\;{\mathbb{R}}^{n+1}$ is of $L_k$-finite type ($L_k$-f.t.) if $x\;=\;{\sum}^p_{i=0}x_i$ for some positive integer p < $\infty$, $x_i$ : $M{\rightarrow}{\mathbb{R}}^{n+1}$ is smooth and $L_kx_i={\lambda}_ix_i$, ${\lambda}_i\;{\in}\;{\mathbb{R}}$, $0{\leq}i{\leq}p$, $L_kf=trP_k\;{\circ}\;{\nabla}^2f$ for $f\;{\in}\'C^{\infty}(M)$, where $P_k$ is the kth Newton transformation, ${\nabla}^2f$ is the Hessian of f, $L_kx\;=\;(L_kx^1,\;{\ldots},\;L_kx^{n+1})$, $x=(x^1,\;{\ldots},\;x^{n+1})$. In this article we study the following(hyper)surfaces in ${\mathbb{R}}^{n+1}$ from the view point of $L_1$-finiteness type: totally umbilic ones, generalized cylinders $S^m(r){\times}{\mathbb{R}}^{n-m}$, ruled surfaces in ${\mathbb{R}}^{n+1}$ and some revolution surfaces in ${\mathbb{R}}^3$.

MERIDIAN SURFACES IN 𝔼4 WITH POINTWISE 1-TYPE GAUSS MAP

  • Arslan, Kadri;Bulca, Betul;Milousheva, Velichka
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.911-922
    • /
    • 2014
  • In the present article we study a special class of surfaces in the four-dimensional Euclidean space, which are one-parameter systems of meridians of the standard rotational hypersurface. They are called meridian surfaces. We show that a meridian surface has a harmonic Gauss map if and only if it is part of a plane. Further, we give necessary and sufficient conditions for a meridian surface to have pointwise 1-type Gauss map and find all meridian surfaces with pointwise 1-type Gauss map.