• Title/Summary/Keyword: $K(Ta,Nb)O_3$

Search Result 146, Processing Time 0.039 seconds

Dielectric Properties of Ti-doped K(Ta,Nb)O3 Thin Films for Tunable Microwave Applications

  • Bae Hyung-Jin;Koo Jayl;Hong Jun-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.120-126
    • /
    • 2006
  • Ferroelectric materials have been widely investigated for high density dynamic random access memories, opto-electrics, and tunable microwave devices due to their properties. In this study, we have investigated the dielectric properties of Ti doped $K(Ta,\;Nb)O_3$ thin films. By doping Ti Into the $K(Ta,Nb)O_3$ system, Ti with a valence value of +4 will substitute Ta or Nb ions with a valence value of +5. This substitution will introduce an acceptor state. Therefore, this introduced acceptor state will reduce dielectric loss by trapping electrons. Using 3% Ti-doped $K(Ta,Nb)O_3\;targets,\;K(Ta,Nb)O_3$:Ti films were grown in MgO(001) crystals using pulsed laser deposition. First, growth conditions were optimized. A reduction in the loss tangent was observed for Ti-doped $K(Ta,Nb)O_3$ relative to undoped films, although a reduction in tunability is also seen. The crystallinity, morphology, and tunability of $K(Ta,Nb)O_3$:Ti films are reported.

An Investigation on the Dielectric and Microwave Properties of Ag(Ta,Nb)O3 Thick Films on the Alumina Substrates (알루미나 기판에 스크린 프린팅된 Ag(Ta,Nb)O3 후막의 유전특성 및 초고주파 특성에 대한 연구)

  • Lee, Ku-Tak;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.925-928
    • /
    • 2011
  • Perovskite niobates and tantalates have been placed on a short list of functional materials for future technologies. This article was investigated ferroelectric materials $Ag(Ta,Nb)O_3$ thick film. In this study, we have fabricated the $Ag(Ta,Nb)O_3$ thick film on the $Al_2O_3$ substrates by screen printing method. The $Ag(Ta,Nb)O_3$ thick film were fabricated by the mixed oxide method. The sintering temperature and time were 1,150$^{\circ}C$, 2 hr. The electrical properties of $Ag(Ta,Nb)O_3$ thick film were investigated at 30~100$^{\circ}C$.

Dielectric Properties and Ordering Structures of Pb(Fe1/2Ta1/2)O3-Pb(Fe1/2Nb1/2)O3 Solid Solutions (Pb(Fe1/2Ta1/2)O3-Pb(Fe1/2Nb1/2)O3 고용체의 유전특성 및 질서배열구조)

  • Woo, Byong-Chul;Kim, Byung-Kook;Lee, Jong-Ho;Park, Hyun-Min;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.863-870
    • /
    • 2002
  • The Single phase $Pb(Fe_{1/2}Ta_{1/2})O_3$ (x=0.0∼1.0) solid solutions were successfully synthesized and their ordering structures as well as dielectric properties were investigated ${{r(Nb^{5+})=r(Ta^{5+})=0.78 {\AA},\;AW(Nb^{5+})=92.91,\;AW(Ta^{5+})=180.95}}$. While $Pb(Fe_{1/2}Ta_{1/2})O_3$ showed typical relaxor ferroelectric characteristics such as dielectric relaxation and diffuse phase transition, the sharpeness of the phase transition increased as $Ta^{5+}$ was replaced by $Nb^{5+}$ and finally $Pb(Fe_{1/2}Nb_{1/2})O_3$ showed normal ferroelectric characteristics with no dielectric relaxation. By using Raman spectroscopy, it was revealed that the $Fe^{3+}\;and\;Ta^{5+}\;of\;Pb(Fe_{1/2}Ta_{1/2})O_3$ were stoichiometrically 1:1 ordered within the short range which can be hardly probed even by TEM. Also, The degree of ordering in $Pb(Fe_{1/2}Ta_{1/2})O_3$ decreased as $Ta^{5+}$ was replaced by $Nb^{5+}$ and finally $Fe^{3+}\;and\;Nb^{5+}\;of\;Pb(Fe_{1/2}Nb_{1/2})O_3$ were completely disordered. The relaxor ferroelectric characteristics of $Pb(Fe_{1/2}Ta_{1/2})O_3$ could be correlated with the stoichiometric 1:1 ordering of B-site cations within the short range which can be hardly probed even by TEM. Also, the decrease of the relaxor ferroelectric characteristics with the replacement of $Ta^{5+}\;by\;Nb^{5+}$ could be correlated with the weakening of the ordering and the normal ferroelectric characteristics of $Pb(Fe_{1/2}Nb_{1/2})O_3$ could be correlated with the complete disordering of B-site cations.

Structural Characterization of the (TEX)$Sr_2Co_0.5Nb(Ta)_0.5O_4$(/TEX) and (TEX)$Sr_3CoNb(Ta)O_7$(/TEX)

  • Jo, Han Sang;Ri-Zhu Yin;Ryu, Gwang Hyeon;Yu, Cheol Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.679-684
    • /
    • 2000
  • The Sr2Co0.5Nb(Ta)0.5O4 and Sr3CoNb(Ta)O7 compounds, both with Ruddlesden-Popper structures, have been synthesized by the ceramic method at $1150^{\circ}C$ under atmospheric pressure. The crystallographic structure of the compounds was assigned to the tetr agonal system with space group 14/mmm by X-ray diffraction(XRD) Rietveld refinement. The reduced lattice volume and lattice parameters increased as the Ta with 5d substitutes for the Nb with 4d in the compounds. The Co/Nb(Ta)O bond length has been determined by X-ray absorption spectroscopic(EXAFS/XANES) analysis and the XRD refinement. The CoO6,octahedra were tetragonally distorted by elongation of Co-O bond along the c-axis. The magnetic measurement shows the compounds Sr2Co0.5Nb(Ta)0.5O4 and Sr3CoNb(Ta)O7 have paramagnetic properties and the Co ions with intermediate spin sates between high and low spins in D4h symmetry. All the compounds showed semiconducting behavior whose electrical conductivity increased with temperature up to 1000 K. The electrical conductiviy increased and the activation energy for the conduction decreased as the number of perovskite layers increased in the compounds with chemical formula An+1BnO3n+1.

Characterization of Ag doped 0.9(Na0.52K0.48)NbO3-0.1LiTaO3 Ceramics (Ag가 첨가된 0.9(Na0.52K0.48)NbO3-0.1LiTaO3 세라믹스)

  • Lee, Kyoung-Soo;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.517-520
    • /
    • 2010
  • Lead-free $0.9(Na_{0.52}K_{0.48})NbO_3$ - $0.1LiTaO_3$ piezoelectric ceramics doped with $Ag_2O$ (0-4 mol%) have been prepared by the conventional mixed oxide method. The structural and electrical properties were analyzed in order to find its potential applications. The crystal structure of 1-4 mol% Ag doped $0.9(Na_{0.52}K_{0.48})NbO_3$-$0.1LiTaO_3$ lead free piezoelectric ceramics were investigated for several sintering temperatures ($1100^{\circ}C$) by the use of X-ray diffraction analysis. In order to analyze the effect of Ag dopants on the $0.9(Na_{0.52}K_{0.48})NbO_3$-$0.1LiTaO_3$ ceramic, the diffraction intensity ratio of the (002) to (200) planes were calculated from the X-ray diffraction patterns of the ceramic samples.

Structural and Microwave Dielectric Properties of $Mg_{5}B_{4}O_{15}$ (B=Ta, Nb) Ceramics with Sintering Temperature (소결온도에 따른 $Mg_{5}B_{4}O_{15}$ (B=Ta, Nb) 세라믹스의 구조 및 마이크로파 유전 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Lee, Moon-Kee;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1420-1421
    • /
    • 2006
  • In this study, structural and micowave dielectric properties of the $Mg_{5}B_{4}O_{15}$ (B=Ta, Nb) cation-deficient perovskite ceeramics. The specimens are prepared through the solid-state route. According to the XRD pattern, $Mg_{4}Ta_{2}O_9$ and $MgTa_{2}O_6$ phase exist in calcined and sintered $Mg_{5}Ta_{4}O_{15}$ powder. Also $Mg_{5}Ta_{4}O_{15}$ phase added with increasing sintering temperature. In the case of calcined and sintered $Mg_{5}Nb_{4}O_{15}$ powder, single phase of $Mg_{5}Nb_{4}O_{15}$ were appeared. The bulk density and quality factor of the $Mg_{5}B_{4}O_{15}$ (B=Ta, Nb) ceramics were increased with sinteming temperature in $1400^{\circ}C{\sim}1450^{\circ}C$, but these were decreased in another sintering temperature. Dielectric constant of the $Mg_{5}Ta_{4}O_{15}$ ceramics was increased continuously with increasing of sintering temperature. And the dielectric constant of the $Mg_{5}Nb_{4}O_{15}$ ceramics was increased in $1400^{\circ}C{\sim}1450^{\circ}C$ but decreased in $1475^{\circ}C$. In the case of the $Mg_{5}Ta_{4}O_{15}$ and $Mg_{5}Nb_{4}O_{15}$ ceramics sintered at $1450^{\circ}C$ for 5h, the dielectric constant, quality factor, and temperature coefficient of the resonant frequency (TCRF) were 8.2, 259,473 GHz, -10.91 $ppm/^{\circ}C$ and 14, 37,350 GHz, -52.3 $ppm/^{\circ}C$, respectively.

  • PDF

$Ag(Ta_{0.5}Nb_{0.5})O_3$ ceramic의 전기적, 유전적 특성 연구

  • Lee, Gyeong-Su;Lee, Gyu-Tak;Ham, Yong-Su;Go, Jong-Hyeok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.89-89
    • /
    • 2009
  • In this study, the structural characteristics and the electrical properties of $Ag(Ta,Nb)O_3$ ceramics were investigated. Compound ceramics were fabricated by the mixed oxide method. The sintering temperature was 1200 $^{\circ}C$. The dielectric properties of $Ag(Ta,Nb)O_3$ ceramics were measured from 1 kHZ to 1 MHz. The electrical properties of $Ag(Ta,Nb)O_3$ ceramics were investigated at the various temperature ranges.

  • PDF

X-Ray Spectrometric Analysis of $Ta_2O_5$,$Nb_2O_5$ and $SnO_2$in Tin Slags using Standard Addition and Dilution Method (표준물첨가 및 희석법을 이용한 주석 슬랙중$Ta_2O_5$,$Nb_2O_5$$SnO_2$의 X-선 분광분석)

  • Young-Sang Kim;Dong-Hui Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.424-482
    • /
    • 1983
  • Determination for $Ta_2O_5$,$Nb_2O_5$ and $SnO_2$ in tin slags was investigated by X-ray spectrometric method. Standard addition-dilution method was attempted and showed a comparable accuracy with standard calibration curve method. Pure chemicals($Ta_2O_5$,$Nb_2O_5$ and $SnO_2$) were added to the samples and diluted with silica or ferric oxide. For the determination of $Ta_2O_5$and$SnO_2$ , silica was more suitable than ferric oxide while the latter was more preferable than the former for $Nb_2O_5$.

  • PDF

Structural, FTIR and ac conductivity studies of NaMeO3 (Me ≡ Nb, Ta) ceramics

  • Roy, Sumit K.;Singh, S.N.;Kumar, K.;Prasad, K.
    • Advances in materials Research
    • /
    • v.2 no.3
    • /
    • pp.173-180
    • /
    • 2013
  • Lead-free complex perovskite ceramics $NaMeO_3$ ($Me{\equiv}Nb$, Ta) were synthesized using conventional solid state reaction technique and characterized by structural, FTIR and electrical (dielectric and ac conductivity) studies. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of single-phase orthorhombic structure with the space group Pmmm (47). Dielectric studies showed the diffuse phase transition at $394^{\circ}C$ for $NaNbO_3$ and $430^{\circ}C$ for $NaTaO_3$. Ac conductivity in both the compounds follows Jonscher's power law.

Influence of $TiO_2$ on the dielectric properties of $Bi(Nb_{0.7}Ta_{0.3})O_4$ ceramics for low-firing (저온소결용 $Bi(Nb_{0.7}Ta_{0.3})O_4$ 세라믹스의 유전특성에 미치는 $TiO_2$ 영향)

  • Kim, Dae-Min;Yoon, Sang-Ok;Kim, Kwan-Soo;Kim, Shin;Kim, Jae-Chan;Kim, Kyung-Joo;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.298-298
    • /
    • 2007
  • Influence of $TiO_2$ on the dielectric properties of the $Bi(Nb_{0.7}Ta_{0.3})O_4$ ceramic with 7 wt% zinc borosilicate(ZBS) glass was investigated as a function of the $TiO_2$ contents with a view to applying this system to LTCC technology. The $Bi(Nb_{0.7}Ta_{0.3})O_4$ ceramic addition of 7 wt% ZBS glass ensured successful sintering below $900^{\circ}C$. But, TCF of $Bi(Nb_{0.7}Ta_{0.3})O_4$ ceramic is large negative values, respectively, it is necessary to adjust to zero TCF for practical applications Therefore, the addition of materials having positive TCF, such as $TiO_2$, might be an effective method for the improvement. In general, increasing addition of $TiO_2$ increased dielectric constant and TCF but it decreased the sinterability and $Q{\tiems}f$ value significantly due to the dielectric property and high sintering temperature of $TiO_2$. $Bi(Nb_{0.7}Ta_{0.3})O_4$ ceramic with 7 wt% ZBS glass and then addition 0.5 wt% $TiO_2$ sintered at $900^{\circ}C$ demonstrated 42 in the dielectric constant(${\varepsilon}_r$), 1,000 GHz in the $Q{\times}f$ value, and $10{\pm}5\;ppm/^{\circ}C$ in the temperature coefficient of resonant frequency(${\tau}_f$).

  • PDF