• 제목/요약/키워드: $I{\kappa}B{\alpha}$ expression

검색결과 372건 처리시간 0.024초

Inhibitory effects of flavonoids on TNF-α-induced IL-8 gene expression in HEK 293 cells

  • Lee, Soo-Hyoung;Kim, Young-Jin;Kwon, Sang-Hoon;Lee, Young-Hee;Choi, Soo-Young;Park, Jin-Seu;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • 제42권5호
    • /
    • pp.265-270
    • /
    • 2009
  • Due to their multiple biological activities, flavonoids have gained attention as potentially useful therapeutics for a variety of diseases including cancer, cardiovascular diseases, and autoimmune diseases. In this study, we demonstrated that several flavonoids, including kaempferol, quercetin, fisetin, and chrysin block TNF-$\alpha$ induced IL-8 promoter activation and gene expression in HEK 293 cells. In addition, phosphorylation and degradation of $I{\kappa}B{\alpha}$ and translocation of NF-${\kappa}B$ p65 were inhibited by these flavonoids in TNF-$\alpha$-stimulated HEK 293 cells. Furthermore, generation of reactive oxygen species (ROS) in response to TNF-$\alpha$ was reduced by the flavonoids. Moreover, although pretreatment with fisetin, quercetin, or chrysin decreased cell viability, kaempferol did not. Taken together, these findings suggest that kaempferol would be useful for the treatment of TNF-$\alpha$-induced inflammatory diseases.

Lonicera Japonioa Inhibits the Production of NO through the Suppression of NF-kB Activity in LPS-stimulated Mouse Peritoneal Macrophages

  • 김영희;김한도
    • 한방안이비인후피부과학회지
    • /
    • 제17권1호
    • /
    • pp.163-171
    • /
    • 2004
  • The flowers of Lonicera japonica Thunb. (Caprifoliaceae) has been used as anti-inflammatory drug in the folk medicine recipe and been proved its anti-inflammatory effect in the oriental medicine. However, the action mechanism of Lonicera japonica that exhibits anti-inflammatory effects has not been determined. Since nitric oxide (NO) is one of the major inflammatory parameter, we studied the effect of aqueous extracts of Lonicera japonica (AELJ) on NO production in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. NO and inducible NO synthase (iNOS) level were significantly reduced in LPS-stimulated macrophages by AELJ compared to those without Electrophoretic mobility shift assay (EMSA) indicated that AELJ blocked the activation of nuclear factor kappa B (NF-kB), which was considered to be a potential transcription factor for the iNOS expression. AELJ also blocked the phosphorylation and degradation of inhibitor of kappa B-alpha (IkB-${\alpha}$). Furthermore, IkB kinase alpha (IKK${\alpha}$), which is known to phosphorylate serine residues of IkB directly, is inhibited by AELJ in vivo and in vitro. These results suggest that AELJ could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of NF-kB activity.

  • PDF

Salidroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 불활성화를 통한 LPS에 (Inhibition of LPS induced iNOS, COX-2 and cytokines expression by salidroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells)

  • 원소정;박희준;이경태
    • 생약학회지
    • /
    • 제39권2호
    • /
    • pp.110-117
    • /
    • 2008
  • In this study, we investigated the anti-inflammatory effects of salidroside (SAL) isolated from the MeOH extract of Acer tegmentosum Maxim heartwood in RAW 264.7 macrophage cells. SAL pretreatment significantly inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions in the lipopolysaccharide (LPS)-induced RAW 264.7 cells. Western blot and RT-PCR analyses revealed that SAL inhibited the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, SAL reduced the release and the mRNA expressions of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6). Furthermore, nuclear factorkappa B ($NF{-\kappa}B$) luciferase reporter assay was performed to know the involvement of SAL in the production of pro-inflammatory cytokines, we confirmed that LPS-induced transcription activity of $NF{-\kappa}B$ was inhibited by SAL. Taken together, our data indicate that anti-inflammatory property of salidroside might be the result from the inhibition of iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expressions via the down-regulation of $NF{-\kappa}B$ activity.

Tussilagone suppressed the production and gene expression of MUC5AC mucin via regulating nuclear factor-kappa B signaling pathway in airway epithelial cells

  • Choi, Byung-Soo;Kim, Yu-jin;Yoon, Yong Pill;Lee, Hyun Jae;Lee, Choong Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.671-677
    • /
    • 2018
  • In the present study, we investigated whether tussilagone, a natural product derived from Tussilago farfara, significantly affects the production and gene expression of airway MUC5AC mucin. Confluent NCI-H292 cells were pretreated with tussilagone for 30 min and then stimulated with EGF (epidermal growth factor) or PMA (phorbol 12-myristate 13-acetate) for 24 h or the indicated periods. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. To elucidate the action mechanism of tussilagone, effect of tussilagone on PMA-induced $NF-{\kappa}B$ signaling pathway was investigated by western blot analysis. Tussilagone significantly inhibited the production of MUC5AC mucin protein and down-regulated the expression of MUC5AC mucin gene, induced by EGF or PMA. Tussilagone inhibited PMA-induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa Ba ($I{\kappa}B{\alpha}$). Tussilagone inhibited PMA-induced phosphorylation and nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. These results suggest that tussilagone can regulate the production and gene expression of mucin by acting on airway epithelial cells through regulation of $NF-{\kappa}B$ signaling pathway.

돼지 말초혈액 단핵구세포에서 trans-10, cis-12 conjugated linoleic acid의 TNF-${\alpha}$ 생산에 대한 nuclear factor-${\kappa}B$ p65 활성 조절 효과 (Trans-10, cis-12 Conjugated Linoleic Acid Modulates Nuclear Factor-${\kappa}B$ p65 Activity on the Production of Tumor Necrosis Factor-${\alpha}$ in Porcine Peripheral Blood Mononuclear Cells)

  • 김영범;이일우;강지훈;양만표
    • 한국임상수의학회지
    • /
    • 제28권2호
    • /
    • pp.190-195
    • /
    • 2011
  • 본 연구에서 돼지 PBMC에 t10c12-CLA 처리는 TNF-${\alpha}$생산을 증가시켰으나, LPS 자극 PBMC에서는 TNF-${\alpha}$생산을 감소시켰다. t10c12-CLA 처리는 PBMC의 inhibitory ${\kappa}B$ ($I{\kappa}B$)-${\alpha}$ 단백질 분해를 증가시키고 NF-${\kappa}B$ p65 활성 수준을 증가시켰다. 그러나 LPS 자극 PBMC에서는 상반되는 효과가 관찰되었다. 특히, LPS 비자극 PBMC에서 t10c12-CLA는 NF-${\kappa}B$ 저해제인 caffeic acid phenethyl ester (CAPE)를 처리한 경우 NF-${\kappa}B$ p65 활성 수준을 증가시켰으나 반대로 LPS로 자극한 CAPE 처리 PBMC에서는 NF-${\kappa}B$ p65 활성 수준을 억제시켰다. 이상의 결과는 t10c12-CLA가 돼지 PBMC에 있어 LPS 자극 유무에 따라 다른 효과를 가질 수 있으며, 이는 NF-${\kappa}B$ p65 활성도의 변화와 관련성이 있음을 보여주고 있다.

Antiinflammatory Effect of Lactic Acid Bacteria: Inhibition of Cyclooxygenase-2 by Suppressing Nuclear Factor-${\kappa}B$ in Raw264.7 Macrophage Cells

  • Lee, Jeong-Min;Hwang, Kwon-Tack;Jun, Woo-Jin;Park, Chang-Soo;Lee, Myung-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권10호
    • /
    • pp.1683-1688
    • /
    • 2008
  • Lactobacillus casei 3260 (L. casei 3260) was evaluated in relation to the inflammatory response mediated by lipopolysaccharide (LPS)-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and cyclooxygenase-2 (COX-2) expression in Raw264.7 macrophage cells. The treatment of Raw264.7 cells with L. casei 3260 significantly inhibited the secretion of tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and prostaglandins $E_{2}\;(PGE_{2})$, followed by suppression of COX-2. To clarify the molecular mechanism, the inhibitory effect of L. casei 3260 on the NF-${\kappa}B$ signaling pathway was examined based on the luciferase reporter activity. Although the treatment of Raw264.7 cells with L. casei 3260 did not affect the transcriptional activity of NF-${\kappa}B$, it did inhibit NF-${\kappa}B$ activation, as determined by the cytosolic p65 release and degradation of I-${\kappa}B{\alpha}$. Therefore, these findings suggest that the suppression of COX-2 through inhibiting the NF-${\kappa}B$ activation by LPS may be associated with the antiinflammatory effects of L. casei 3260 on Raw264.7 cells.

Anti-Inflammatory Effect of Mangostenone F in Lipopolysaccharide-Stimulated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation

  • Cho, Byoung Ok;Ryu, Hyung Won;So, Yangkang;Lee, Chang Wook;Jin, Chang Hyun;Yook, Hong Sun;Jeong, Yong Wook;Park, Jong Chun;Jeong, Il Yun
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.288-294
    • /
    • 2014
  • Mangostenone F (MF) is a natural xanthone isolated from Garcinia mangostana. However, little is known about the biological activities of MF. This study was designed to investigate the anti-inflammatory effect and underlying molecular mechanisms of MF in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MF dose-dependently inhibited the production of NO, iNOS, and pro-inflammatory cytokines (TNF-${\alpha}$, IL-6, and IL-$1{\beta}$) in LPS-stimulated RAW264.7 macrophages. Moreover, MF decreased the NF-${\kappa}B$ luciferase activity and NF-${\kappa}B$ DNA binding capacity in LPS-stimulated RAW264.7 macrophages. Furthermore, MF suppressed the NF-${\kappa}B$ activation by inhibiting the degradation of $I{\kappa}B{\alpha}$ and nuclear translocation of p65 subunit of NF-${\kappa}B$. In addition, MF attenuated the AP-1 luciferase activity and phosphorylation of ERK, JNK, and p38 MAP kinases. Taken together, these results suggest that the anti-inflammatory effect of MF is associated with the suppression of NO production and iNOS expression through the down-regulation of NF-${\kappa}B$ activation and MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

당지질로 유도한 염증반응에서 Piceatannol의 항염증 기전 연구 (Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide)

  • 조한진;심재훈;소홍섭;윤정한
    • 한국식품영양과학회지
    • /
    • 제41권9호
    • /
    • pp.1226-1234
    • /
    • 2012
  • 본 연구에서는 염증반응을 조절하는 다양한 신호전달체계를 중심으로 분자생물학적 방법을 통해 piceatannol의 항염증 기전을 규명하였다. LPS로 염증반응을 유도한 Raw 264.7 대식세포에서 piceatannol은 iNOS의 발현 억제를 통해 NO의 생성을 감소시키고 염증성 사이토카인(TNF-${\alpha}$, IL-6, IL-$1{\beta}$)의 생성을 감소시켰다. 염증반응을 조절하는 신호전달체계 중 piceatannol은 LPS에 의해 유도된 $I{\kappa}B$의 분해와 p65의 핵으로의 이동을 억제하고, LPS에 의해 유도된 SAPK/JNK의 인산화를 억제하였다. 또한 piceatannol은 LPS와 IL-6(LPS에 의해 증가됨)에 의한 STAT3의 활성화를 억제하였다. 뿐만 아니라 piceatannol은 Nrf2의 핵 내 축적을 야기하고 ARE의 transcriptional activity를 증가시켜 HO-1의 발현을 증가시켰다. 본 연구의 결과, piceatannol은 NF-${\kappa}B$와 AP-1, STAT3 신호전달의 억제를 통해, 그리고 HO-1의 발현 증가를 통해 항염증 효과를 나타내었다(Fig. 8).

Inhibitory Effect of Benzofuran Compound on Cyclooxygenase

  • Min, Kyung-Rak;Ahn, Ki-Young;Chung, Eun-Yong;Lee, Yong-Rok;Kim, Yeong-Shik;Kim, Young-Soo
    • Natural Product Sciences
    • /
    • 제10권6호
    • /
    • pp.315-320
    • /
    • 2004
  • Alpha-viniferin was previously isolated as a cyclooxygenase (COX)-2 inhibitor from Carex humilis (Cyperaceae) and is an oligomeric stilbene compound with benzofuran (BF) moieties in its chemical structure. In the present study, a chemically synthetic BF compound, named as 3,3-dimethyl-2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18-hexadecahydro-1H-benzo[b] cyclopentadeca[d]furan-1-one, was discovered to inhibit bacterial lipo polysaccharide (LPS)-induced prostaglandin $E_2$ $(PGE_2)$ production in macrophages RAW 264.7. The BF compound exhibited a selectively preferred inhibitory effect on COX-2 activity over COX-1 activity. Furthermore, BF compound inhibited LPS-induced COX-2 expression at transcription level. As a down-regulatory mechanism of COX-2 expression shown by BF compound, suppression of nuclear factor $(NF)-{\kappa}B$ activation has been demonstrated. BF compound inhibited LPS-induced $NF-{\kappa}B$ transcriptional activity and nuclear translocation of $NF-{\kappa}B$ p65, in parallel, but did not affect LPS-induced degradation of inhibitory ${\kappa}B{\alpha}$ protein $(I{\kappa}B{\alpha})$. Taken together, anti-inflammatory effect of BF compound on $PGE_2$ production was ascribed by its down-regulatory action on LPS-induced COX-2 synthesis in addition to inhibitory action on enzyme activity of COX-2.

The Inhibitory Effects of Bee Venom and Melittin on the Proliferation of Vascular Smooth Muscle Cells

  • Ha, Seong-Jong;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • 제23권2호
    • /
    • pp.139-157
    • /
    • 2006
  • In the present study, I have investigated the bee venom (BV) and melittin (a major component of BV) -mediated anti-proliferative effects, and defined its mechanisms of action in cultured rat aortic vascular smooth muscle cells (VSMCs). BV and melittin $(0.4{\sim}0.8\;{\mu}g/ml)$ effectively inhibited 50 ng/ml platelet derived growth factor BB (PDGF-BB)-induced VSMCs proliferations. The regulation of apoptosis has attracted much attention as a possible means of eliminating excessively proliferating VSMCs. In the present study, the treatment of BV and melittin strongly induced apoptosis of VSMCs. I examined the effects on $NF-{\kappa}B$ activation to investigate a possible mechanism for anti-proliferative effects of BV and melittin, the PDGF-BB-induced $I{\kappa}B{\alpha}$ phosphorylation and its degradation were potently inhibited by melittin, and DNA binding activity and nuclear translocation of $NF-{\kappa}B$ p50 subunit in response to the action of PDGF-BB were potently attenuated by melittin. In further investigations, melittin markedly inhibited the PDGF-BB-induced phosphorylation of Akt but not ERK1/2, upstream signals of $NF-{\kappa}B$. Treatment of melittin also potently induced pro-apoptotic protein p53, Bax, and caspase-3 expression, but decreased anti-apoptotic protein Bcl-2 expression. These results suggest that the anti-proliferative effects of BV and melittin in VSMCs through induction of apoptosis via suppressions of $NF-{\kappa}B$ and Akt activation, and enhancement of apoptotic signal pathway. Based on these results, BV acupuncture can be a candidate as a therapeutic method for restenosis and atherosclerosis.

  • PDF