• Title/Summary/Keyword: $Hg_2^{2+}$ ions

Search Result 213, Processing Time 0.025 seconds

Characteristics of a alkaline protease from Alteromonas sp. (Alteromonas sp.가 생산하는 alkaline protease의 특성)

  • Yeo, In-Ok;Choi, Seong-Hyun;Lee, Jae-Sook;Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.106-110
    • /
    • 1995
  • An alkaline protease-producing bacterium was isolated from Korean hot pepper paste and identified as Alteromonas sp. CN301. A alkaline protease was purified and characterized. The optimal pH and temperature for the enzyme activity were pH 12.0 and $35^{\circ}C$, respectively. Molecular weight of the enzyme was determined as 31,000 dalton by the SDS-PAGE. The enzyme was stable in the range of $pH\;6.0{\sim}13.0$ showing the residual activity above 80% of the enzyme activity. The residual activity of the enzyme was 64% when the enzyme was incubated at $50^{\circ}C$ for 1 hr. The activity of the enzyme was not affected by most metal ions tested except $Hg^{2+}$, and activated by Triton X-100, Tween 20 and Tween 80. The enzyme activity was severely inhibited by PMSF and EDTA, suggesting that the enzyme is serine protease having metal ion in its structure.

  • PDF

Performance of Electric Double Layers Capacitor Using Activated Carbon Materials from Rice Husk as Electrodes

  • Nguyen, Tuan Dung;Ryu, Jae Kyung;Bramhe, Sachin N.;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.643-648
    • /
    • 2013
  • Activated carbon (AC) was synthesized from rice husks using the chemical activation method with KOH, NaOH, a combination of (NaOH + $Na_2CO_3$), and a combination of (KOH + $K_2CO_3$) as the chemical activating reagents. The activated carbon with the highest surface area (around $2000m^2/g$) and high porosity, which allows the absorption of a large number of ions, was applied as electrode material in electric double layer capacitors (EDLCs). The AC for EDLC electrodes is required to have a high surface area and an optimal pore size distribution; these are important to attain high specific capacitance of the EDLC electrodes. The electrodes were fabricated by compounding the rice husk activated carbons with super-P and mixed with polyvinylidene difluoride (PVDF) at a weight ratio of 83:10:7. AC electrodes and nickel foams were assembled with potassium hydroxide (KOH) solution as the electrolyte. Electrochemical measurements were carried out with a three electrode cell using 6 M KOH as electrolyte and Hg/HgO as the reference electrode. The specific capacitance strongly depends on the pore structure; the highest specific capacitance was 179 F/g, obtained for the AC with the highest specific surface area. Additionally, different activation times, levels of heating, and chemical reagents were used to compare and determine the optimal parameters for obtaining high surface area of the activated carbon.

Electrochemical Desalination of a 50% w/w Sodium Hydroxide Solution, a Pharmaceutical Sterilization Agent

  • Jaehong Lee;Ji-hyun Yang;Eugene Huh;Sewon Park;Bonmoo Koo;Ik-Sung Ahn
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • Sodium hydroxide solutions are often employed as sterilization agents in the pharmaceutical industry. Here, the chloride content is considered as a critical impurity. In this study, an electrochemical method was developed to remove chloride ions (Cl-) through the oxidative deposition of AgCl on a Ag anode. The Cl- content in the commercially available 50% w/w NaOH solution employed was approximately 100 mg Cl-/kg NaOH. As the OH- content is approximately 18,000 times higher than the Cl- content, the formation of AgCl may be expected to be thermodynamically less favorable than the formation of Ag2O. However, activation energies for AgCl and Ag2O formation have been reported to be approximately 3.8 and 31.2 kJ/mol, respectively, and indicate that AgCl formation is favored. AgCl can be selectively produced by controlling the anode potential. Here, the Cl- concentration was reduced to less than 50 mg Cl-/kg NaOH when an anode potential of 0.18 or 0.19 V vs. Hg/HgO (reference electrode) was applied for one hour at 50℃. XRD analysis and visual monitoring of the Ag anode confirmed the oxidative deposition of AgCl on the anode surface as well as the electrochemical desalination of the concentrated NaOH solution.

Enzymatic Characteristics of steroid $\Delta^1$-dehydrogenase from Arthrobacter simplex

  • Lee, Mi-Kyung;Bae, Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.119-125
    • /
    • 1994
  • Steroid $\Delta^1$-dehydrogenase purified from hydrocortisone-induced cells of Arthrobacter simplex converted various 3-ketosteroids into their corresponding $\Delta^1$-dehydrogenated products. The transformation efficiencies depend upon the chemical structure of the steroids, especially length of the side chain at 17 position and hydroxyl groups at 11 and 17 positions. The Km values for androstenedione, the most favorable substrate examined, and hydrocortisone were 74 ${\mu}M$ and 294 ${\mu}M$, respectively. The optimum temperature and pH of the enzyme reaction were 35$^{\circ}C$ and pH 9, respectively, and the enzyme was relatively stable at the range from 20 to 35$^{\circ}C$ and from pH 5 to 10 after one hour of incubation. The enzyme activity was markedly inhibited in the presence of $Cu^{2+},\;Fe^{3+},\;Hg^{2+},\;Mo^{6+}$ ions, and somewhat inhibited by $Zn^{2+}$ and $Fe^{2+}$. $\alpha,\alpha'$-Dipyridyl that inhibits 9$\alpha$-hydroxylase and accumulates 1,4-androstadiene-3,17-dione from sterols revealed no inhibitory effect on this enzyme. EGTA showed inhibitory effect. $\beta$-Estradiol competitively inhibited the enzyme activity. Chemical modifications of the enzyme were attempted with several reagents. p-Hydroxymer-curibenzoate showed inhibition of the enzyme activity and protection of the substrate. This suggests that cysteine residue may be involved in the active site of the enzyme.

  • PDF

Construction and Characterization of Multiple Heavy Metal-Resistant Phenol-Degrading Pseudomonads Strains

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.1001-1007
    • /
    • 2003
  • Metal ions contamination may inhibit microorganisms involved in the biodegradation of organic compounds and affect biodegradation rates. Therefore, it is likely that bioremediation of xenobiotics-contaminated soils and waste will require inoculation with efficient biodegrading microbial communities, with capabilities of being resistant to heavy metals as well. Two different transconjugants (Pseudomonas sp. KMl2TC and P. aeruginosa TC) were constructed by conjugation experiments. Results on MIC, induction and growth inhibition strongly indicated that arsenic-resistant plasmid, pKM20, could be mobilized, and the newly acquired phenotype of pKM20 was not only expressed but also well regulated, resulting in newly acquired resistances to $As^{5+},\;As^{3+},\;and\;Sb^{3+} in\;addition\;to\;Cd^{2+},\;Zn^{2+},\;and\;Hg^{2+}$. The phenol- degradation efficiencies of Pseudomonas sp. KMl2TC were maintained significantly even at high heavy metal concentrations at which these efficiencies of P. aeruginosa TC were completely impaired. The results in this study on the effects of heavy metals on phenol degradation, especially after conjugation, are the first ever reported. All the results described in this study encourage to establish a goal of making "designer biocatalysts" which could degrade certain xenobiotics in the area contaminated with multiple heavy metals.

Gas Permeation Properties of Sulfonated 6FDA-Based Polyimide Membranes Exchanged with Metal Ions (금속이온이 치환된 설폰화된 6FDA계 폴리이미드 막의 기체 투과 특성)

  • Im, Hyeon-Soo;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Koh, Hyung-Chul;Lee, Choong-Sub;Ha, Seong-Yong;Cheong, Seong-Ihl;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.555-560
    • /
    • 2009
  • Sulfonic acid of the sulfonated 6FDA-based polyimides were exchanged with the monovalent ($Li^+$, $Na^+$, $K^+$) and divalent ($Mg^{2+}$, $Ca^{2+}$, $Ba^{2+}$) ions. The effect of metal cations exchanged sulfonated polyimides was investigated in terms of gas permeability and selectivity for $CO_2$, $O_2$ and $N_2$ gases. Thermogravimetric analysis showed that thermal stability of sulfonated polyimide was improved by exchanged metal cations. The permeabilities of monovalent cation-exchanged, sulfonated polyimide were reduced as the ion radius reduced [$Li^+$(0.059 nm)>$Na^+$(0.102 nm)>$K^+$(0.138 nm)], and those of divalent cations exchanged were determined by the ionic radii and electrostatic crosslinking between the polymer and metal cations, whereas the selectivities of all the metal cation-exchanged, sulfonated polyimides for $CO_2/N_2$ and $O_2/N_2$, were higher than those of sulfonated polyimide membranes. The sulfonated polyimide exchanged with the potassium cation showed the $O_2$ permeability of 89.98 Barrer [$1\times10^{-10}\;cm^3$(STP) $cm/cm^2{\cdot}s{\cdot}cmHg$] and the sulfonated polyimide exchanged with the lithium cation showed the $O_2/N_2$ selectivity of 12.9.

Studies on the Cellulase (I) On the character of cellulase by Rhizopus strain. (섬유소분해효소에 관한 연구 (제 1 ) Rhizopus 이 생성하는 Cellulase 의 성에 대하여)

  • 성낙계
    • Korean Journal of Microbiology
    • /
    • v.6 no.3
    • /
    • pp.87-91
    • /
    • 1968
  • To research the characteristics of cellulose produced from one strains of Rhizopus(R-B 14) when it acts on the carboxyl methyl cellulose, this experiment was carried out in crude purified cellulose. The results obtained were as follows: 1. The optimum pH of cellulose was from 4. 5 to 5 .5 and the range of its stability to the pH was considerably extensive and it was from 4 to 7. 2. The optimum temperature of cellulose was $50^{\circ}C$ and the activity of it was instantly inactivated at $70^{\circ}C$. 3. The inhibition of the metal ions to the activity of cellulose was as follows; $Hg^{++}$ > $Ag^+$ +/ > $Fe^{+++}$ > $Pb^{++}$. But the activity of cellulose was not affected at all by $Na^+$, $K^+$ and $Mg^{++}$.

  • PDF

Purification and Properties of Alcohol Oxidase Produced by Hnasenula sp. MS-364 (Hansenula sp. MS-364가 생산하는 Alcohol Oxidase 의 정제 및 성질)

  • 김병호;김형만;권태종
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.60-67
    • /
    • 1995
  • Methanol assimilating yeast, Hansenula sp. MS-364 that has high productivity with methanol as carbon and energy source has been preserved at dept. of Microbiological engineering. Purification and properties of alcohol oxidase (E.C.1.1.3.13: oxygen oxidoreductase) were investigated in the methanol assimilating yeast, Hansenula sp. MS-364. Alcohol oxidase is related to the catalytic reaction that degrades alcohol to aldehyde and peroxide. The methanol oxidizing enzyme was purified by ammonium sulfate precipitation, DEAE-Sephadex A-50 chromatography and gel filtration on Sepharose 6B from cell-free extract. The purified enzyme preparation gave a single band in the sodium dodesyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the enzyme was calculated to be about 576,000 and molecular weight of subunit was also calculated to be 72,000. The optimal pH and temperature of the enzyme reaction were pH 7.5 and 37$\circ$C, respectively. The enzyme was unstable in acidic pH and higher temperature. The enzyme was not specific for methanol and also oxidized lower primary alcohols. The Km value for methanol was 2.5 mM and that for ethanol was 1.66 mM. The enzyme was heavily inhibited by metal ions such as Hg$^{2+}$, Ag$^{2+}$, Cu$^{2+}$. The high concentration of EDTA and sulfhydryl reagents strongly inhibited the enzyme activity. The component of coenzyme was determined to flavin adenine dinucleotide.

  • PDF

Isolation of a Thermophilic Bacillus sp. Producing the Thermostable Cellulase-free Xylanase,and Properties of the Enzyme (내열성 Cellulase-free Xylanase를 생산하는 고온성 Bacillus sp.의 분리 및 효소 특성)

  • Kim, Dae-Joon;Shin, Han-Jae;Min, Bon-Hong;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.304-310
    • /
    • 1995
  • A thermophilic bacterium producing the extracellular cellulase-free xylanase was isolated from soil and has been identified as Bacillus sp. The optimal growth temperature was 50$\circ$C and the optimal pH, 7.0. Under the optimal growth condition, maximal xylanase production was 2.2 units/ml in the flask culture. The enzyme production was induced by xylan and xylose, but was repressed by sucrose or trehalose. The partially purified xylanase was most active at 70$\circ$C. It was found that the enzyme was stable at 65$\circ$C for 10 hours with over 75% of the activity. The enzyme was most active at pH 7.0 and retained 90% of its maximum activity between pH 5.0 and pH 9.0 though Bacillus sp. was not grown on alkaline conditions (>pH 8.0). In addition, the activity of xylanase was over 60% at pH 10.0. At the ambient temperature, the enzyme was stable over a pH range of 5.0 to 9.0 for 10 h, indicating that the enzyme is thermostable and alkalotolerant. The activity of xylanase was completely inhibited by metal ions including Hg$^{2+}$ and Fe$^{2+}$, while EDTA, phenylmethylsulfonyl fluoride (PMSF), $\beta$-mercaptoethanol and SDS didn't affect its activity. The enzyme was also identified to exert no activity on carboxymethylcellulose, laminarin, galactomannan, and soluble starch.

  • PDF

New Dioscin-Glycosidase Hydrolyzing Multi-Glycosides of Dioscin from Absidia Strain

  • Fu, Yao Yao;Yu, Hong Shan;Tang, Si Hui;Hu, Xiang Chun;Wang, Yuan Hao;Liu, Bing;Yu, Chen Xu;Jin, Feng Xie
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1011-1017
    • /
    • 2010
  • A novel dioscin-glycosidase that specifically hydrolyzes multi-glycosides, such as 3-O-${\alpha}$-L-($1{\to}4$)-rhamnoside, 3-O-${\alpha}$-L-($1{\to}2$)-rhamnoside, 3-O-${\alpha}$-L-($1{\to}4$)-arabinoside, and ${\beta}$-D-glucoside, on diosgenin was isolated from the Absidia sp.d38 strain, purified, and characterized. The molecular mass of the new dioscin-glycosidase is about 55 kDa based on SDS-PAGE. The dioscin-glycosidase gradually hydrolyzes either 3-O-${\alpha}$-L-($1{\to}4$)-Rha or 3-O-${\alpha}$-L-($1{\to}2$)-Rha from dioscin into 3-O-${\alpha}$-L-Rha-${\beta}$-D-Glc-diosgenin, further rapidly hydrolyzes the other ${\alpha}$-L-Rha from 3-O-${\alpha}$-L-Rha-${\beta}$-D-Glc-diosgenin into the main intermediate products of 3-O-${\beta}$-D-Glc-diosgenin, and subsequently hydrolyzes these intermediate products into aglycone as the final product. The enzyme also gradually hydrolyzes 3-O-${\alpha}$-L-($1{\to}4$)-arabinoside, 3-O-${\alpha}$-L-($1{\to}2$)-rhamnoside, and ${\beta}$-D-glucoside from [3-O-${\alpha}$-L-($1{\to}4$)-Ara, 3-O-${\alpha}$-L-($1{\to}4$)-Rha]-${\beta}$-D-Glc-diosgenin into diosgenin as the final product, exhibiting significant differences from previously reported glycosidases. The optimal temperature and pH for the new dioscin-glycosidase is $40^{\circ}C$ and 5.0, respectively. Whereas the activity of the new dioscin-glycosidase was not affected by $Na^+$, $K^+$, and $Mg^{2+}$ ions, it was significantly inhibited by $Cu^{2+}$ and $Hg^{2+}$ ions, and slightly affected by $Ca^{2+}$ ions.