• Title/Summary/Keyword: $H_2S$ sensor

Search Result 465, Processing Time 0.034 seconds

Preparation of ZnO Powders by Hydrazine Method and Its Sensitivity to C2H5OH (하이드라진 방법에 의한 ZnO 미분말의 합성 및 에탄올 감응성)

  • Kim, Sun-Jung;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.628-633
    • /
    • 2008
  • ZnO nanopowders were synthesized by the sol-gel method using hydrazine reduction, and their gas responses to 6 gases (200 ppm of $C_2H_5OH$, $CH_3COCH_3$, $H_2$, $C_3H_8$, 100 ppm of CO, and 5 ppm of $NO_2$) were measured at $300\;{\sim}\;400^{\circ}C$. The prepared ZnO nanopowders showed high gas responses to $C_2H_5OH$ and $CH_3COCH_3$ at $400^{\circ}C$. The sensing materials prepared at the compositions of [$ZnCl_2$]:[$N_2H_4$]:[NaOH] = 1:1:1 and 1:2:2 showed particularly high gas responses ($S\;=\;R_a/R_g,\;R_a$ : resistance in air, $R_g$ : resistance in gas) to 200 ppm of $C_2H_5OH$($S\;=\;102.8{\sim}160.7$) and 200 ppm of $CH_3COCH_3$($S\;= 72.6{\sim}166.2$), while they showed low gas responses to $H_2$, $C_3H_8$, CO, and $NO_2$. The reason for high sensitivity to these 2 gases was discussed in relation to the reaction mechanism, oxidation state, surface area, and particle morphology of the sensing materials.

Simulation Analysis of Spatially Arterial Pulse Wave using Two-dimensional Array Sensors with Magnetoresistive Device (2차원 배열 자기저항소자를 이용한 공간 맥진파형의 전산모사 분석)

  • Kim, M.S.;Kim, S.W.;Kim, G.W.;Lee, S.J.;Lee, S.G.;Lee, H.S.;Park, D.H.;Hwang, D.G.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.307-310
    • /
    • 2005
  • To get the spatial feature of arterial pulse, we designed spatial pulse diagnostic apparatus (SPDA) using a 2-dimensional magnetoresistive sensor array. The magnetic field distribution fur magnet may was simulated using finite element method. We recognized that the field distribution of parallel magnet mays was more sensitive and uniformed than that of perpendicular one. Also the spatial displacements of magnet array were agreed with the output signal of magnetic tunnel junction (MTJ) sensor array.

A low-noise transceiver design for 10GHz band motion sensor (인체감지 센서용 저 잡음 10GHz대역 송수신기 설계)

  • Chae, Gyoo-Soo
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.313-318
    • /
    • 2012
  • In this study, we propose a low-noise transceiver for 10GHz motion sensor. The transceiver presented here has a circuit(Hittite HMC908LC5) that is composed of a two way-$0^{\circ}$ power splitter(the 1:2 block) and a $90^{\circ}$ Hybrid. The noise reduction circuit utilizes an LNA followed by an image reject mixer which is driven by an LO buffer amplifier. A modeling and analysis have been pursued using CST MWS. A prototype sensor was manufactured to measure the performance and experimental results show that the proposed sensor is good enough to use for a accurate motion sensor.

Disposable Strip-Type Biosensors for Amperometric Determination of Galactose

  • Gwon, Kihak;Lee, Seonhwa;Nam, Hakhyun;Shin, Jae Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.310-317
    • /
    • 2020
  • A development of disposable strip-type galactose sensor for point-of-care testing (POCT) was studied, which was constructed using screen-printed carbon electrodes. Galactose levels were determined by the redox reaction of galactose oxidase in the presence of potassium ferricyanide as an electron transfer mediator in a small sample volume (i.e., less than 1 µL). The optimal performance of biosensor was systematically designated by varying applied potential, operating pH, mediator concentration, and amount of enzyme on the electrode. The sensor system was identified as a highly active for the galactose measurement in terms of the sensitivity (slope = 4.76 ± 0.05 nA/µM) with high sensor-to-sensor reproducibility, the linearity (R2 = 0.9915 in galactose concentration range from 0 to 400 µM), and response time (t95% = <17 s). A lower applied potential (i.e., 0.25 V vs. Ag/AgCl) allowed to minimize interference from readily oxidizable metabolites such as ascorbic acid, acetaminophen, uric acid, and acetoacetic acid. The proposed galactose sensor represents a promising system with advantage for use in POCT.

Electrogenerated Chemiluminescence Sensor Based on Tris(2,2'-bipyridyl) ruthenium(II) Immobilized in the Composite Film of Multi-walled Carbon Nanotube/Sol-gel Zinc oxide/Nafion

  • Choi, Eun-Jung;Kang, Chang-Hoon;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2387-2392
    • /
    • 2009
  • A composite film of multi-walled carbon nanotube (MWCNT)/sol-gel-derived zinc oxide(ZnO)/Nafion has been utilized as an efficient immobilization matrix for the construction of a highly sensitive and stable tris(2,2'-bipyridyl) ruthenium(II) (Ru(${bpy)_3}^{2+})$ electrogenerated chemiluminescence (ECL) sensor. The electrochemical and ECL behaviors of Ru(${bpy)_3}^{2+})$ ion-exchanged into the composite film were strongly dependent upon the sol-gel preparation condition, the amount of MWCNT incorporated into the ZnO/Nafion composite film, and the buffer solution pH. The synergistic effect of MWCNTs and ZnO in the composite films increased not only the sensitivity but also the long-term stability of the ECL sensor. The present ECL sensor based on the MWCNT/ZnO/Nafion gave a linear response ($R^2$ = 0.999) for tripropylamine concentration from 500 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 15 nM. The present ECL sensor showed outstanding long-term stability (94% initial signal retained for 5 weeks). Since the present ECL sensor exhibits large response towards NADH, it could be applied as a transduction platform for the ECL biosensor in which the NADH is produced from the dehydrogenase-based enzymatic reaction in the presence of NA$D^+$ cofactor.

Highly Selective Liquid Membrane Sensor Based on 1,3,5-Triphenylpyrylium Perchlorate for Quick Monitoring of Sulfate Ions

  • Ganjali, Mohammad Reza;Ghorbani, Maryam;Daftari, Azadeh;Norouzi, Parviz;Pirelahi, Hooshang;Dargahani, Hossein Daryanavard
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.172-176
    • /
    • 2004
  • A highly selective membrane electrode based on1,3,5-triphenylpyrylium perchlorate (TPPP) is presented. The proposed electrode shows very good selectivity for sulfate ions over a wide variety of common inorganic and organic anions. The sensor displays a nice Nernstian slope of -29.7 mV per decade. The working concentration ranges of the electrode is 1.0{\times}10^{-1}-6.3{\times}10^{-6} $M with a detection limit of $4.0{\times}10^{-6}$ M (480 ng per mL). The response time of the sensor in whole concentration ranges is very short (< 6 s). The response of the sensor is independent on the pH range of 2.5-9.5. The best performance was obtained with a membrane composition of 32% PVC, 59% benzyl acetate, 5% TPPP and 4% hexadecyltrimethylammonium bromide. It was successfully used as an indicator electrode for titration of sulfate ions with barium ions. The electrode was also applied for determination of salbutamol sulfate and paramomycine sulfate.

A Differential Current-to-Time Interval Converter Using Current-Tunable Schmitt Triggers

  • Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.375-380
    • /
    • 2017
  • A differential current-to-time interval converter is presented for current mode sensors. It consists of a ramp voltage generator, a current mode sensor, a reference current source, two current-tunable Schmitt triggers, a one-shot multivibrator, and two logic gates. The design principle is to apply a ramp voltage to each input of the two current-tunable Schmitt triggers whose threshold voltages are proportional to the drain current values of the current mode sensors. A proposed circuit converts a current change in the ISFET biosensor into its equivalent pulse width change. A prototype circuit built using TSMC 0.18 nm CMOS process exhibit a conversion sensitivity amounting to $726.9{\mu}s/pH$ over pH variation range of 2-12 and a linearity error less than ${\pm}0.05%$.

Concentration estimation of gas mixtures using a tin oxide gas sensor and fuzzy ART (반도체식 가스센서와 퍼지 ART를 이용한 혼합가스의 농도 추정)

  • Lee Jeong-Hun;Cho Jung-Hwan;Jeon Gi-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.21-29
    • /
    • 2006
  • A fuzzy ARTMAP neural network and a fuzzy ART neural network are proposed to identify $H_2S,\;NH_3$, and their mixtures and to estimate their concentrations, respectively. Features are extracted from a tin oxide gas sensor operated in a thermal modulation plan. After dimensions of the features are reduced by a preprocessing scheme, the features are fed into the proposed fuzzy neural networks. By computer simulations, the proposed method is shown to be fast in learning and stable in concentration estimating compared with other methods.

Development of a Ubiquitous Sensor for Monitoring Insulators and Lightning Arresters (애자/피뢰기 모니터링을 위한 유비쿼터스 센서 개발)

  • Kil, Gyung-Suk;Rhyu, Keel-Soo;Song, Jae-Yong;Kim, Il-Kwon;Park, Dae-Won;Choi, Soo-Yeon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.117-123
    • /
    • 2007
  • In this study, a ubiquitous sensor for condition monitoring of insulators and lightning arresters installed in power distribution lines and electric traction vehicles is presented. The sensor consists of two parts; a leakage current measurement and a lightning surge detection. Measured data are transmitted to a supervisory computer through ZigBee protocol based on IEEE 802.15.4. To detect leakage current, a window type Mn-ZCT is used and a low-noise amplifier with a gain of 60dB is designed, and this can measure leakage current in ranges of $100{\mu}A{\sim}5mA$. A sample-hold (S/H) and a Rogowski coil are injected to analyze the magnitude of surge current in ranges from 100A to 10kA with $8/20{\mu}s$-waveform.

Novel Copper(Ⅱ)-Selective Senor Based on a New Hexadentates Schiff's Base

  • Ganjali, Mohammad Reza;Emami, Mehdi;Salavati Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1394-1398
    • /
    • 2002
  • A novel copper(II) membrane electrode based on diphenylisocyanate bis(acetylacetone) ethylenediimine (DIBAE), as a new hexadentates Schiff's base was prepared. The electrode exhibited a Nernstian response for Cu$^{2+}$ ions over a wide concentration range (1.0 ${\times}$ 10$^{-1}$ to 1.0 ${\times}$ l0$^{-6}$ M) with a limit of detection of 6.0 ${\times}$ 10$^{-7}$ M (39 ppb). The sensor shows a fast response time (15s) and the membrane can be used for more than 4 months without observing any major deviation. The electrode revealed very good selectivity with respect to many cations including alkali, alkaline earth, transition and heavy metal ions. The proposed sensor could be used in a pH range of 3.0-7.5. It was applied to the direct potentiometric determination of copper in black tea, and in wastewater of copper electroplating samples. The electrode was also used in potentiometric titration of the copper(II) ion with EDTA.