DOI QR코드

DOI QR Code

Electrogenerated Chemiluminescence Sensor Based on Tris(2,2'-bipyridyl) ruthenium(II) Immobilized in the Composite Film of Multi-walled Carbon Nanotube/Sol-gel Zinc oxide/Nafion

  • Choi, Eun-Jung (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Kang, Chang-Hoon (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Choi, Han-Nim (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Lee, Won-Yong (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University)
  • Published : 2009.10.20

Abstract

A composite film of multi-walled carbon nanotube (MWCNT)/sol-gel-derived zinc oxide(ZnO)/Nafion has been utilized as an efficient immobilization matrix for the construction of a highly sensitive and stable tris(2,2'-bipyridyl) ruthenium(II) (Ru(${bpy)_3}^{2+})$ electrogenerated chemiluminescence (ECL) sensor. The electrochemical and ECL behaviors of Ru(${bpy)_3}^{2+})$ ion-exchanged into the composite film were strongly dependent upon the sol-gel preparation condition, the amount of MWCNT incorporated into the ZnO/Nafion composite film, and the buffer solution pH. The synergistic effect of MWCNTs and ZnO in the composite films increased not only the sensitivity but also the long-term stability of the ECL sensor. The present ECL sensor based on the MWCNT/ZnO/Nafion gave a linear response ($R^2$ = 0.999) for tripropylamine concentration from 500 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 15 nM. The present ECL sensor showed outstanding long-term stability (94% initial signal retained for 5 weeks). Since the present ECL sensor exhibits large response towards NADH, it could be applied as a transduction platform for the ECL biosensor in which the NADH is produced from the dehydrogenase-based enzymatic reaction in the presence of NA$D^+$ cofactor.

Keywords

References

  1. Faulkner, L. R.; Bard, A. J. J. Electroanal. Chem. 1977, 1.
  2. Rubinstein, I.; Bard, A. J. J. Am. Chem. Soc. 1981, 103, 512. https://doi.org/10.1021/ja00393a006
  3. Knight, A. W.; Greenway, G. M. Analyst 1996, 121, 101R. https://doi.org/10.1039/an996210101r
  4. Lee, W.-Y. Mikrochim. Acta 1997, 127, 19. https://doi.org/10.1007/BF01243160
  5. Gerardi, R. D.; Barnett, N. W.; Lewis, S. W. Anal. Chim. Acta 1999, 378, 1. https://doi.org/10.1016/S0003-2670(98)00545-5
  6. Rubinstein, I.; Bard, A. J. Anal. Chem. 1983, 55, 1580. https://doi.org/10.1021/ac00260a030
  7. Noffsinger, J. B.; Danielson, N. D. Anal. Chem. 1987, 59, 865. https://doi.org/10.1021/ac00133a017
  8. Brune, S. N.; Bobbitt, D. R. Talanta 1991, 38, 419. https://doi.org/10.1016/0039-9140(91)80080-J
  9. Downey, T. M.; Nieman, T. A. Anal. Chem. 1992, 64, 261. https://doi.org/10.1021/ac00027a005
  10. Dennany, L.; Forster, R. J.; Rusling, J. F. J. Am. Chem. Soc. 2003, 125, 5213. https://doi.org/10.1021/ja0296529
  11. Pittman, T. L.; Miao, W. J. Phys. Chem. C 2008, 112, 16999. https://doi.org/10.1021/jp805791p
  12. Li, Y.; Qi, H.; Yang, J.; Zhang, C. Microchim. Acta 2009, 164, 69. https://doi.org/10.1007/s00604-008-0034-1
  13. Greenway, G. M.; Dolman, S. J. Analyst 1999, 124, 759 https://doi.org/10.1039/a901058k
  14. Zorzi, M.; Pastore, P.; Magno, F. Anal. Chem. 2000, 72, 4934. https://doi.org/10.1021/ac991222m
  15. Greenway, G. M.; Nelstrop, L. J.; Port, S. N. Anal. Chim. Acta 2000, 405, 43. https://doi.org/10.1016/S0003-2670(99)00691-1
  16. Park, Y.-J.; Lee, D. W.; Lee, W.-Y. Anal. Chim. Acta 2002, 471, 51. https://doi.org/10.1016/S0003-2670(02)00932-7
  17. Zhuang, Y.; Ju, H. Analyst 2005, 130, 534. https://doi.org/10.1039/b415430d
  18. Zhao, C.-Z.; Egashira, N.; Kurauchi, Y.; Ohga, K. Anal. Sci. 1998, 14, 439. https://doi.org/10.2116/analsci.14.439
  19. Khramov, A. N.; Collinson, M. M. Anal. Chem. 2000, 72, 2943. https://doi.org/10.1021/ac9914519
  20. Wang, H.; Xu, G.; Dong, S. Analyst 2001, 126, 1095. https://doi.org/10.1039/b100376n
  21. Wang, H.; Xu, G.; Dong, S. Electroanalysis 2002, 14, 853. https://doi.org/10.1002/1521-4109(200206)14:12<853::AID-ELAN853>3.0.CO;2-D
  22. Ding, S.-N.; Xu, J.-J.; Chen, H.-Y. Electroanalysis 2005, 541, 49.
  23. Choi, H. N.; Cho, S.-H.; Lee, W.-Y. Anal. Chem. 2003, 75, 4250. https://doi.org/10.1021/ac0206014
  24. Choi, H. N.; Lyu, Y.-K.; Lee, W.-Y. Electroanalysis 2006, 18, 275. https://doi.org/10.1002/elan.200503400
  25. Liu, Z.; Liu, Y.; Yang, H.; Yang, Y.; Shen, G.; Yu, R. Electroanalysis 2005, 17, 1065. https://doi.org/10.1002/elan.200403215
  26. Ohtake, T.; Hijii, S.; Sonoyama, N.; Sakata, T. Appl. Surf. Sci. 2006, 253, 1753. https://doi.org/10.1016/j.apsusc.2006.03.008
  27. Wang, J. X.; Sun, X. W.; Wei, A. Appl. Phys. Letters 2006, 88, 233106. https://doi.org/10.1063/1.2210078
  28. Sun, W.; Zhai, Z.; Wang, D.; Liu, S.; Jiao, K. Bioelectrochem. 2009, 74, 295. https://doi.org/10.1016/j.bioelechem.2008.11.001
  29. Spanhel, L.; Anderson, M. A. J. Am. Chem. Soc. 1991, 113, 2826. https://doi.org/10.1021/ja00008a004
  30. Meulenkamp, E. A. J. Phys. Chem. B 1998, 102, 5566. https://doi.org/10.1021/jp980730h
  31. Zhang, H.; Pan, J.; He, X.; Pan, M. J. Appl. Poly. Sci. 2008, 107, 3306. https://doi.org/10.1002/app.27473
  32. Liufu, S.-C.; Xiao, H.-N.; Li, Y.-P. Mater. Chem. Phys. 2006, 95, 117. https://doi.org/10.1016/j.matchemphys.2004.11.048
  33. Tang, H.; Wan, Z.; Pan, M.; Jiang, S. P. Electrochem. Commun. 2007, 9, 2003. https://doi.org/10.1016/j.elecom.2007.05.024
  34. Choi, H. N.; Lee, J.-Y.; Lyu, Y.-K.; Lee, W.-Y. Anal. Chim. Acta 2006, 565, 48. https://doi.org/10.1016/j.aca.2006.01.106
  35. Martin, C. R.; Rubinstein, I.; Bard, A. J. J. Am. Chem. Soc. 1982, 104, 4817. https://doi.org/10.1021/ja00382a014

Cited by

  1. Fabrication of a novel electrochemiluminescence glucose biosensor using Au nanoparticles decorated multiwalled carbon nanotubes vol.155, pp.2, 2009, https://doi.org/10.1016/j.snb.2011.01.010
  2. Imine-linked chemosensors for the detection of Zn2+ in biological samples vol.4, pp.19, 2009, https://doi.org/10.1039/c3ra46759g
  3. In Situ Growth and Characterization of Metal Oxide Nanoparticles within Polyelectrolyte Membranes vol.128, pp.38, 2009, https://doi.org/10.1002/ange.201606178
  4. In Situ Growth and Characterization of Metal Oxide Nanoparticles within Polyelectrolyte Membranes vol.55, pp.38, 2009, https://doi.org/10.1002/anie.201606178