• 제목/요약/키워드: $H_2S$ removal

검색결과 779건 처리시간 0.03초

The Utilization of Waste Seashells for $H_{2}S$ Removal

  • Kim, Young-Sik;Suh, Jeong-Min;Jang, Sung-Ho
    • 한국환경보건학회지
    • /
    • 제31권6호
    • /
    • pp.483-488
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_{2}$S was studied in a thermogravimetric analyzer at temperature between 600 and $800^{circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_{2}$S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy (SEM). Measurements of the reaction of $H_{2}$S with waste seashells show that particles smaller than 0.631 mm can achieve high conversion to CaS. According to TGA and fixed bed reactor results, temperature had influenced on $H_{2}$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at $800^{circ}C$. Desulfurization was related to calcinations temperature.

Parametric study for enhanced performance of Cu and Ni electrowinning

  • Kim, Joohyun;Kim, Han S.;Bae, Sungjun
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.201-206
    • /
    • 2019
  • In this study, we performed an electrowinning process for effective removal of metals (Cu and Ni) in solution and their recovery as solid forms. A complete removal of Cu and Ni (1,000 mg/L) was observed during four times recycling test, indicating that our electrowinning system can ensure the efficient metal removal with high stability and durability. In addition, we investigated effect of operation parameters (i.e., concentration of boric acid only for Ni, variation of pH, concentration of electrolyte ($H_2SO_4$), and cell voltage) on the efficiency of metal removal (Cu and Ni) during the electrowinning. The addition of boric acid significantly enhanced removal efficiency of Ni as the concentration of boric acid increased up to 10 g/L. Compared to negligible pH effect (pH 1, 2, and 4) on the Cu removal, we observed the increase in removal efficiency of Ni as the pH increased from 1 to 4. The electrolyte concentration did not significantly influence the removal of Cu and Ni in this study. We also obtained great removal rates of Cu and Ni at 2.5 V and 4.0 V, which were much faster than those at lower voltages. Finally, almost 99% of each Cu and Ni (1,000 mg/L) was selectively removed from the mixture of metals by adjusting pH and addition of boric acid after the completion of Cu removal. The findings in this study can provide a fundamental knowledge about effect of important parameters on the efficiency of metal recovery during the electrowinning.

복합플라스틱계 담체를 이용한 Biotrickling filters의 Toluene과 황화수소 제거특성 (Characteritics of Toluene and $H_2S$ Removal in a Biotrickling filters with Plastic & Woodchip composite Media)

  • 임동원;공성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권2호
    • /
    • pp.37-46
    • /
    • 2007
  • 본 연구에서는 플라스틱과 Woodchip을 주원료로 하여 복합플라스틱계 담체를 개발하고 성능평가를 실시하였다. 개발담체는 기존상용화 담체에 비하여 처리효율 및 미생물 부착성 등은 유사하였으나, 경제적인 측면에서 우수한 것으로 평가되었다. 담체의 성능평가는 Lab scale의 바이오트리클링필터에 개발담체를 충진하여 톨루엔과 황화수소를 대상으로 제거효율 및 운전인자 등을 평가하였다. 본 연구에서 톨루엔 제거효율은 가스유입량 $1.5\;m^3/hr$, 유입농도 260ppm, 공탑체류시간 42s 운전조건에서 90% 이상으로 높게 나타내었으며, 톨루엔 최대제거능은 $77\;g/m^3{\cdot}hr$이었다. 황화수소와 톨루엔 동시제거 실험에서는 $H_2S$와 톨루엔이 효과적으로 제거되었다. $H_2S$의 최대제거능은 $100\;g-S/m^3{\cdot}hr$이었으며, $H_2S$ 농도가 100 ppm까지는 톨루엔제거에 영향을 주지 않았으나 $H_2S$ 농도가 증가함에 따라 톨루엔 제거효율은 감소되었다.

Simultaneous Biofiltration of H2S, NH3 and Toluene using an Inorganic/Polymeric Composite Carrier

  • Park, Byoung-Gi;Shin, Won-Sik;Chung, Jong-Shik
    • Environmental Engineering Research
    • /
    • 제13권1호
    • /
    • pp.19-27
    • /
    • 2008
  • Simultaneous removal of ternary gases of $NH_3$, $H_2S$ and toluene in a contaminated air stream was investigated over 180 days in a biofilter. A commercially available inorganic/polymeric composite chip with a large void volume (bed porosity > 0.80) was used as a microbial support. Multiple microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for $H_2S$ removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) ranged from 60 - 120 seconds and the inlet feed concentration was $0.0325\;g/m^3-0.0651\;g/m^3$ for $NH_3$, $0.0636\;g/m^3-0.141\;g/m^3$ for $H_2S$, and $0.0918\;g/m^3-0.383\;g/m^3$ for toluene, respectively. The observed removal efficiency was 2% - 98% for $NH_3$, 2% - 100% for $H^2S$, and 2% - 80% for toluene, respectively. Maximum elimination capacity was about $2.7\;g/m^3$/hr for $NH_3$, > $6.4\;g/m^3$/hr for $H_2S$ and $4.0\;g/m^3$/hr for toluene, respectively. The inorganic/polymeric composite carrier required 40 - 80 days of wetting time for biofilm formation due to the hydrophobic nature of the carrier. Once the surface of the carrier was completely wetted, the microbial activity became stable. During the long-term operation, pressure drop was negligible because the void volume of the carrier was two times higher than the conventional packing materials.

철 산화법을 이용한 합성가스내 산성가스 제거 특성 (Acid Gas Removal Characteristics for Syngas using Fe Oxidization Process)

  • 이승종;황상연;유영돈;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.804-807
    • /
    • 2007
  • The acid gas removal (AGR) system was designed and installed to remove $H_2S$ in coal syngas in the pilot-scale coal gasification system for producing chemicals like Dimethyl Ether(DME). The syngas from the coal gasification at the rate of $100{\sim120$ $Nm^3$/hr included pollutants such as fly ash. $H_2S$, COS, $NH_3$, etc. The designed temperature and pressure of the AGR system are below 50oC and 8 kg/$cm^2$. Fe-chelate was used as an absorbent. $H_2S$ was stably removed below 0.5 ppm in the AGR system when the concentration of $H_2S$ was $150{\sim}450$ ppm. The pH of Fe-chelate solution was also stably maintained between $8{\sim}9$. FeMgO absorbent was also tested to remove $H_2S$ in the lab-scale AGR system and $H_2S$ was also removed below 0.5 ppm in the initial operation.

  • PDF

Pilot 규모 산성가스 제거공정 운전 특성 (Operation Characteristics of Pilot-scale Acid Gas Removal Process)

  • 이승종;류상오;정석우;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.533-536
    • /
    • 2009
  • The gasification technology is a very flexible and versatile technology to produce a wide variety products such as electricity, steam, hydrogen, Fisher-Tropsch(FT) diesels, Dimethyl Ether(DME), methanol and SNG(Synthetic Natural Gas) with near-zero pollutant emissions. Gasification converts coal and other low-grade feedstocks such as biomass, wastes, residual oil, petroleum coke, etc. to a very clean and usable syngas. Syngas is produced from gasifier including CO, $H_2$, $CO_2$, $N_2$, particulates and smaller quantities of $CH_4$, $NH_3$, $H_2S$, COS and etc. After removing pollutants, syngas can be variously used in energy and environment fields. The pilot-scale coal gasification system has been operated since 1994 at Ajou University in Suwon, Korea. The pilot-scale gasification facility consists of the coal gasifier, the hot gas filtering system, and the acid gas removal (AGR) system. The acid gas such as $H_2S$ and COS is removed in the AGR system before generating electricity by gas engine and producing chemicals like Di-methyl Ether(DME) in the catalytic reactor. The designed operation temperature and pressure of the $H_2S$ removal system are below $50^{\circ}C$ and 8 kg/$cm^2$. The iron chelate solution is used as an absorbent. $H_2S$ is removed below 0.1 ppm in the H2S removal system.

  • PDF

펜톤산화에 따른 복합폐수의 처리효율연구 (Treatment Efficiency of Complex Wastewater by Fenton's Oxidation Condition)

  • 성일화
    • 한국환경보건학회지
    • /
    • 제32권5호
    • /
    • pp.446-450
    • /
    • 2006
  • In order to treat the wastewater containing organic compound, pre-treatment system connected with MSP(molecular separation process) was investigated. With the aim of selecting an optimum process of Fenton's oxidation, removal efficiency of each process in the optimum reaction condition was recommended. The $Fe/H_{2}O_{2}$(ferric sulfate to hydrogen peroxide)reagent is referred to as the Fenton's regent, which produces hydroxyl radicals by the interaction of Fe with $H_{2}O_{2}$. The powerful oxidizing ability and extreme kinetic reactively of the hydroxyl radical was well established. Increasing dosage of $Fe/H_{2}O_{2}$ increased removal efficiency as molar ratio of $Fe/H_{2}O_{2}$ between 0.2 and 2.5. Optimum dosage of molar ratio was 1. The removal efficiency for reaction condition was increased as pH decreased when the molar ratio of $Fe/H_{2}O_{2}$ was 1.7. Fenton's oxidation was most efficient in the reaction time 35 min for complex wastewater. Also, coagulation aid experiments using kaolin resulted in 3% of kaolin dosage.

Enhanced Removal of Phenol from Aquatic Solution in a Schorl-catalyzed Fenton-like System by Acid-modified Schorl

  • Xu, Huan-Yan;Prasad, Murari;Wang, Peng
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.803-807
    • /
    • 2010
  • Schorl modified by $H_2SO_4$ has been successfully developed to enhance schorl-catalyzed Fenton-like reaction for removal of phenol in an aqueous solution. The phenol removal percentage can be increased from 4% to 100% by the system of modified schorl and $H_2O_2$. Batch experiments indicate that the percent increases in removal of phenol by increasing the dosage of catalyst, temperature and initial concentration of $H_2O_2$. The results of XRD, FT-IR and SEM suggest that no new phases are formed after removal of phenol by modified schorl. ICP-AES results reveal that more dissolution of iron results in higher catalytic oxidant activity in the system of modified schorl and $H_2O_2$. Besides minor adsorption, mineral-catalyzed Fenton-like reaction governs the process.

호기성 고율 안정조에서 빛의 조사 기간과 pH가 조류의 영양물질 제거에 미치는 영향 (Effect on Nutrients Removal of Algae in Aerobic High Rate Pond by Irradiance Period and pH)

  • 공석기;안승구
    • 한국환경과학회지
    • /
    • 제6권2호
    • /
    • pp.141-152
    • /
    • 1997
  • The pilot plant had been made so as to be an association system from the various items managed to have degrees of efficiency and It have been done to consider the experimental result with irradiance period and pH influence of all major things to treatment function of Waste Stabilization Pond. The results are as following. The attained results for continuous & cyclic irradiance 1. 24L.-reactor was prior to 12L.-12D.-reactor on oxygen generation & algal production ability. 2. 24L.-reactor was prior to 12L.-12D.-reactor on nutrients removal efficiency. 3. In 24L.-reactor it maintained 5mg/L∼6mg/L, DO concent enough to a fish's survival. The attained results for pH condition 1. Oxygen generation ^ algal production in pH 4-reactor were higher than those in pH 10-reactor. 2. The acidic condition at pH 4 and alkalic condition at pH 10 did not so much affect an algal growth and nutrients removal. The attained results for whole 1. In view of the results appeared as [(NH3-N)+(NO3-N)] removal efficiency, 89.1%∼93.9% and PO4-P removal efficiency, 34.3%∼83.7% & COD removal efficiency, 88.5%∼93.9%. It is possible to treat the wastewater with starch and pH which have been known as thedifficult problem. 2. At the point of non using methanol to nitrificate NO3-N, the nutrients removal method by using an algal growth is the most economical method in the whole nutrients removal methods. 3. The nutrients removal method by using an algal growth contributes to natural ecosystem. 4. The nutrients removal method by using an algal growth is excellant in the prevention against the eutrophication.

  • PDF

Effect of Sulfide Removal on Sulfate Reduction at pH 5 in a Hydrogen Fed Gas-Lift Bioreactor

  • Bijmans, Martijn F.M.;Dopson, Mark;Ennin, Frederick;Lens, Piet N.L.;Buisman, Cees J.N.
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1809-1818
    • /
    • 2008
  • Biotechnological treatment of sulfate- and metal-ions-containing acidic wastewaters from mining and metallurgical activities utilizes sulfate-reducing bacteria to produce sulfide that can subsequently precipitate metal ions. Reducing sulfate at a low pH has several advantages above neutrophilic sulfate reduction. This study describes the effect of sulfide removal on the reactor performance and microbial community in a high-rate sulfidogenic gas-lift bioreactor fed with hydrogen at a controlled internal pH of 5. Under sulfide removal conditions, 99% of the sulfate was converted at a hydraulic retention time of 24 h, reaching a volumetric activity as high as 51 mmol sulfate/l/d. Under nonsulfide removal conditions, <25% of the sulfate was converted at a hydraulic retention time of 24 h reaching volumetric activities of <13 mmol sulfate/l/d. The absence of sulfide removal at a hydraulic retention time of 24 h resulted in an average $H_2S$ concentration of 18.2 mM (584 mg S/I). The incomplete sulfate removal was probably due to sulfide inhibition. Molecular phylogenetic analysis identified 11 separate 16S rRNA bands under sulfide stripping conditions, whereas under nonsulfide removal conditions only 4 separate 16S rRNA bands were found. This shows that a less diverse population was found in the presence of a high sulfide concentration.