DOI QR코드

DOI QR Code

Enhanced Removal of Phenol from Aquatic Solution in a Schorl-catalyzed Fenton-like System by Acid-modified Schorl

  • Xu, Huan-Yan (College of Materials Science and Engineering, Harbin University of Science and Technology) ;
  • Prasad, Murari (Environmental Chemistry Division, Advanced Materials and Processing Research Institute (C.S.I.R.)) ;
  • Wang, Peng (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
  • Published : 2010.04.20

Abstract

Schorl modified by $H_2SO_4$ has been successfully developed to enhance schorl-catalyzed Fenton-like reaction for removal of phenol in an aqueous solution. The phenol removal percentage can be increased from 4% to 100% by the system of modified schorl and $H_2O_2$. Batch experiments indicate that the percent increases in removal of phenol by increasing the dosage of catalyst, temperature and initial concentration of $H_2O_2$. The results of XRD, FT-IR and SEM suggest that no new phases are formed after removal of phenol by modified schorl. ICP-AES results reveal that more dissolution of iron results in higher catalytic oxidant activity in the system of modified schorl and $H_2O_2$. Besides minor adsorption, mineral-catalyzed Fenton-like reaction governs the process.

Keywords

References

  1. Asok, A.; Anjali, P. Sep. Purif. Technol. 2006, 50, 256. https://doi.org/10.1016/j.seppur.2005.11.033
  2. Tziotzios, G.; Teliou, M.; Kaltsouni, V.; Lyberatos, G.; Vayenas,D.V. Biochem. Eng. J. 2005, 26, 65. https://doi.org/10.1016/j.bej.2005.06.006
  3. Liou, R. M.; Chen, S. H.; Hung, M. Y.; Hsu, C. S.; Lai, J. Y. Chemosphere2005, 59, 117. https://doi.org/10.1016/j.chemosphere.2004.09.080
  4. Yang, C. F.; Qian, Y.; Zhang, L. J.; Feng, J. Z. Chem. Eng. J. 2006,117, 179. https://doi.org/10.1016/j.cej.2005.12.011
  5. Li, Z.; Wu, M. H.; Jiao, Z.; Bao, B. R.; Lu, S. L. J. Hazard. Mater.2004, B114, 111.
  6. Wojciech, K.; Andrzej, W.; Wlodzimierz, R.; Tadeusz, P.; Wiestaw, C.; Izabela, O. Desalination 2004, 163, 287. https://doi.org/10.1016/S0011-9164(04)90202-0
  7. Tarakranjan, G.; Narayan, C. P.; Basudam, A. J. Membr. Sci. 2003,217, 43. https://doi.org/10.1016/S0376-7388(03)00069-3
  8. El-Kosasy, A. M.; Riad, S. M.; Abd El-Fattah, L. E.; Abd El-Kader,A. S. Water Res. 2003, 37, 1769. https://doi.org/10.1016/S0043-1354(01)00437-7
  9. Ahmaruzzaman, M.; Sharma, D. K. J. Colloid Interface Sci. 2005,287, 14. https://doi.org/10.1016/j.jcis.2005.01.075
  10. Bekkouche, S.; Bouhelassa, M.; Hadj, S. N.; Meghlaoui, F. Z. Desalination2004, 166, 355. https://doi.org/10.1016/j.desal.2004.06.090
  11. Will, I. B. S.; Moraes, J. E. F.; Teixeira, A. C. S. C.; Guardani, R.;Nascimento, C. A. O. Sep. Purif. Technol. 2005, 34, 51.
  12. Tomaszewska, M.; Mozia, S.; Morawski, W. Desalination 2004,162, 79.
  13. Hsien, T. Y.; Lin, Y. H. Biochem. Eng. J. 2005, 27, 95. https://doi.org/10.1016/j.bej.2005.08.023
  14. Malik, P. K. J. Phys. Chem. A 2004, 108, 2675. https://doi.org/10.1021/jp031082r
  15. Duesterberg, C. K.; Waite, T. D. Environ. Sci. Technol. 2006, 40,4189. https://doi.org/10.1021/es060311v
  16. Leung, Y. F. Ph. D. Thesis, The Hong Kong University of Science and Technology, HongKong, 2005.
  17. Schoonen, M. A. A.; Xu, Y.; Strongin, D. R. J. Geochem. Explor.1998, 62, 201. https://doi.org/10.1016/S0375-6742(97)00069-1
  18. Kwan, W.; Voelker, B. Environ. Sci. Technol. 2003, 37, 1150. https://doi.org/10.1021/es020874g
  19. Andreozzi, R.; Caprio, V.; Marotta, R. Water Res. 2002, 36, 2761. https://doi.org/10.1016/S0043-1354(01)00499-7
  20. Andreozzi, R.; D’Apuzzo, A.; Marotta, R. Water Res. 2002, 36,4691. https://doi.org/10.1016/S0043-1354(02)00204-X
  21. He, J.; Ma, W. H.; Zhao, J. C.; Yu, J. C. Appl. Catal. B: Environ.2002, 39, 211. https://doi.org/10.1016/S0926-3373(02)00085-1
  22. Chou, S. S.; Huang, C. P.; Huang, Y. H. Environ. Sci. Technol.2001, 35, 1247. https://doi.org/10.1021/es001129b
  23. Lu, M. C. Chemosphere 1999, 40, 125. https://doi.org/10.1016/S0045-6535(99)00213-1
  24. Teel, A. L.; Warberg, C. R.; Atkinson, D. A.; Wattsi, R. J. Water Res. 2001, 35, 977. https://doi.org/10.1016/S0043-1354(00)00332-8
  25. Huang, H. H.; Lu, M. C.; Chen, J. N. Water Res. 2001, 35, 2291. https://doi.org/10.1016/S0043-1354(00)00496-6
  26. Lin, S. S.; Gurol, M. D. Environ. Sci. Technol. 1998, 32, 1417. https://doi.org/10.1021/es970648k
  27. Kwan, W.; Voelker, B. Environ. Sci. Technol. 2004, 38, 3425. https://doi.org/10.1021/es034676g
  28. Kwan, W.; Voelker, B. Environ. Sci. Technol. 2002, 36, 1467. https://doi.org/10.1021/es011109p
  29. Muruganandham, M.; Yang, J. S.; Wu, J. J. Ind. Eng. Chem. Res.2007, 46, 691. https://doi.org/10.1021/ie060752n
  30. Nakamura, T.; Kubo, T. Ferroelectr. 1992, 137, 13. https://doi.org/10.1080/00150199208015933
  31. Xu, H. Y.; Prasad, M.; Liu, Y. J. Hazard. Mater. 2009, 165, 1186. https://doi.org/10.1016/j.jhazmat.2008.10.108
  32. Xu, H. Y.; Prasad, M.; He, X. L.; Shan, L. W.; Qi, S. Y. China Ser. E-Tech. Sci. 2009, 52, 3054. https://doi.org/10.1007/s11431-009-0304-0
  33. Kazmi, A. A.; Thul, R. J. Environ. Sci. Eng. 2007, 49, 189.
  34. Chang, C. Y.; Wang, C. C.; Chang, D. J.; Chang J. S. Water Sci. Technol. 2003, 47, 179.
  35. Jiang, K.; Sun, T. H.; Sun, L. N.; Li, H. B. J. Environ. Sci. 2006,18, 1221. https://doi.org/10.1016/S1001-0742(06)60066-1
  36. Feng, J. Y.; Hu, X. J.; Yue, P. L. Environ. Sci. Technol. 2004, 38,269. https://doi.org/10.1021/es034515c
  37. Robert, J. L.; Fuchs, Y.; Gourdant, J. P. Phys. Chem. Min. 1996, 23,309.
  38. Reddy, B. J.; Frost, R. L.; Martens, W. N.; Wain, D. L.; Kloprogge,J. T. Vib. Spectrosc. 2007, 44, 42. https://doi.org/10.1016/j.vibspec.2006.07.010

Cited by

  1. Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste vol.20, pp.7, 2013, https://doi.org/10.1007/s11356-012-1409-8
  2. Heterogeneous Fenton-like discoloration of Rhodamine B using natural schorl as catalyst: optimization by response surface methodology vol.20, pp.8, 2013, https://doi.org/10.1007/s11356-013-1578-0
  3. Discoloration of Methyl Orange in the Presence of Schorl and H2O2: Kinetics and Mechanism vol.224, pp.10, 2013, https://doi.org/10.1007/s11270-013-1740-9
  4. Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties vol.31, pp.6, 2010, https://doi.org/10.5012/bkcs.2010.31.6.1638
  5. Heterogeneous Fenton-like discoloration of organic dyes catalyzed by porous schorl ceramisite vol.74, pp.10, 2016, https://doi.org/10.2166/wst.2016.427