• Title/Summary/Keyword: $H_2S$

Search Result 26,838, Processing Time 0.059 seconds

The Synthesis and Crystal Structure of (${\eta}^5-Cp^*$)(Ir-B3)(1,2-S,S($CH_2SiMe_3$)-o-carborane)($C_{16}H_{35}B_{10}IrS_2Si$) ((${\eta}^5-Cp^*$)(Ir-B3)(1,2-S,S($CH_2SiMe_3$)-o-carborane) ($C_{16}H_{35}B_{10}IrS_2Si$)의 합성 및 결정구조)

  • Cho, Sung-Il
    • Korean Journal of Crystallography
    • /
    • v.18 no.1_2
    • /
    • pp.1-6
    • /
    • 2007
  • An Organometallic compound, $C_{16}H_{35}B_{10}IrS_2Si$, was synthesized from o-carborane, $Cp^*Ir(S_2C_2B{10}H_{10})$, and $Me_3SiCHN_2$. The molecular structure of this complex has been determined by X-ray diffraction. Crystallographic data : monoclinic, space group $P2_1/n$, $a=10.1986(12)\;{\AA}$, $b=14.834(5)\;{\AA}$, $c=17.139\;{\AA}$, ${\beta}=92.24(2)^{\circ}$, Z=4, $V=2591.0(14)\;{\AA}^3$. The structure was solved by direct methods and refined by full-matrix leat-squares methods to give a model with a reliability factor R=0.053 for 5080 reflections.

Experimental Study on Hydrogen Sulfide Abatement in Sewage Odor Using Microbial Deodorants on the Market (시판용 미생물탈취제를 이용한 하수 악취 내 황화수소 저감에 관한 실험적 연구)

  • Park, Sang Jin;Kwon, Soo Youl
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.2
    • /
    • pp.170-183
    • /
    • 2020
  • Objectives: This study was conducted to estimate a technology to reduce hydrogen sulfide (H2S) in sewage odor using microbial deodorant. Methods: After injecting five commercially available microbial deodorants into fresh sewage, the concentration of hydrogen sulfide over time was measured using the headspace method. H2S concentration in odor samples was measured using gas chromatograph/FPD. Calculated odor concentration and calculated odor intensity by H2S concentration remaining after treatment with microbial deodorant were evaluated theoretically. Results: The rate of H2S abatement by microbial deodorant differed depending on the experimental conditions and the type of deodorant, but it was found to range from 63 to 82%. Especially, two deodorants showed high H2S reduction rates of over 80% on average. However, based on the best deodorant, the theoretically calculated odor concentration by H2S after microbial deodorant treatment was 4,400 OUk, and the theoretical odor intensity was also rated at 4 degrees or higher. Conclusions: In conclusion, microbial deodorant is considered to have a relatively high effect on reducing H2S in sewage odor. However, even after treatment with microbial deodorant, calculated odor concentration and calculated odor intensity were relatively high. This is thought to be caused by other odorous substances besides H2S.

Surface Characteristics and Adsorption Capacity of $H_2$S on the Activated Carbon Impregnated with NaOH (NaOH로 첨착된 활성탄의 표면특성과 $H_2$S 흡착능)

  • 박병배;이석기;박영성
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.319-324
    • /
    • 2001
  • 본 연구에서는 NaOH로 첨착시킨 활성탄의 표면특성변화와 H$_2$S 흡착능을 고찰하였다. 첨착시약으로 사용된 NaOH 용액의 농도는 1~8N이며, 활성탄의 입자크기는 8$\times$30mesh가 적용되었다. 실험결과는 첨착율이 0.87~5.8% 범위 내에서 증가할수록 BET 표면적은 1050$m^2$/g에서 783$m^2$/g로 감소하며, 표면산도는 0.541meq/g-AC에서 0meq/g-AC으로 감소하고, pH는 9.56에서 10.86으로 증가하는 것으로 밝혀졌다. 또한 NaOH로 첨착시킨 활성탄의 H$_2$S 평형흡착능을 보임으로써 비첨착활성탄에 비해 2~3배 높은 수준을 나타냄을 알 수 있었다.

  • PDF

High-Temperature Corrosion of T92 Steel in N2/H2O/H2S-Mixed Gas

  • Shi, Yuke;Kim, Min Jung;Park, Soon Yong;Abro, M. Ali;Yadav, Poonam;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.125-128
    • /
    • 2016
  • The ASTM T92 steel was corroded at $600^{\circ}C$ and $800^{\circ}C$ at 1 atm of $N_2/3.1%H_2O/2.42%H_2S-mixed$ gas. The formed scales were thick and fragile. They consisted primarily of the outer FeS scale and the inner (FeS, $FeCr_2S_4$)-mixed scale containing a small amount of the $Cr_2O_3$ scale. This indicated that corrosion occurred mainly via sulfidation rather than oxidation due to the $H_2S$ gas. Since FeS was present throughout the whole scale, T92 steel was non-protective, displaying high corrosion rates.

Removal of Malodorous Gases from Swine Manure by a Polyurethane Biofilter Inoculated with Heterotrophic and Autotrophic Bacteria. (종속영양세균과 독립영양세균을 고정화한 Polyurethane Biofilter의 돈분뇨 악취제거)

  • 이연옥;조춘구;류희욱;조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.91-97
    • /
    • 2002
  • Removal of malodorous gases from swine manure by a polyurethane biofilter inoculated with heterotrophic and autotrophic bacteria was investigated. Ammonia, hydrogen sulfide and other gases could be efficiently treated at 3~3.6 second of empty bed retention time by the polyurethane biofilter. In the range of SV $200~l,200h^{-1}$ , the average removal efficiency of odor was about 89% when the odor unit of inlet gas was below 4100. Odor elimination capacity of the polyurethane biofilter was$ 1.8$\times$10^{5}$ $~5.0$\times$10^{7}$OUㆍm$^{-3}$$h^{-1}$ that were 84~90% of the inlet load. The critical loads of $NH_3$ and $H_2$S, which mean 97% removal with respect to the inlet loads, were 31 and $27 g.m^{-3}$$h^{-1}$ , respectively. The maximum elimination capacities of $NH_3$ and $H_2$S were 56 and $157 gㆍm^{-3}$ ㆍh$^{-1}$ , respectively. Although the removability for$ NH_3$ and $H_2$S was not influenced by $H_2$S$NH_3$ ratio (ppmv/ppmv), the $H_2$S removability was inhibited by high $H_2$S concentration more than 80 ppmv.

Cupric Complexes Produced from the Reaction of Cupric Nitrate Trihydrate with S-2-Pyridyl Thioates

  • Choi, Young-Nam;So, Hyun-Soo;Lee, Jae-In;Kim, Sung-Gak
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.385-388
    • /
    • 1986
  • The reaction of cupric nitrate trihydrate with S-2-pyridyl thioates in acetonitrile was studied. The major products were the corresponding carboxylic acids and $[Cu(NO_3)(C_5H_4NS)(C_5H_5NS$)] (Complex A). Sometimes $[Cu(NO_3)(C_5H_4NS)(H_2O$)] was also obtained in addition to Complex A. When Complex A was recrystallized in dimethylsulfoxide, $[Cu(NO_3)(C_5H_4NS)(C_5H_5NS)$ {$(CH_3)_2SO$}$_2]{\cdot}2H_2O$ was crystallized. The structures of these copper complexes and the role of cupric nitrate in the hydrolysis of S-2-pyridyl thioates are discussed.

Kinetics and Mechanism of the Hydrolysis of Diazidophenylmethane Derivatives (Diazidophenylmethane 유도체들의 가수분해반응 메카니즘에 대한 반응속도론적 연구)

  • Kwon, Ki Sung;Seo, Jee Hyung;Lee, Yong Gu
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.6
    • /
    • pp.313-319
    • /
    • 1997
  • Diazidophenylmethane derivatives(X: p-H, $p-OCH_3,\;p-F,\;p-CH_3$) were synthesized and the rate constants of hydrolysis of diazidophenylmethane derivatives were determined by UV spectrophotometry in 50:50(v/v) aqueous methanol at 25$^{\circ}C$. On the basis of rate equation, substituent effect, activation parameters, solvent effect, salt effect, and product analysis, it may be concluded that the hydrolysis of diazidophenylmethane derivatives proceed through $S_N2_CA$ mechanism below pH 2.0, while above pH 12.0 through $S_N2$ mechanism, and in the range of pH from 2 to 12 through $S_N1$ mechanism respectively.

  • PDF

Stereospecific Reaction of S,S-prodien(= 1,9-bis(S)-prolyl-1,9-dioxo-2,5,8-triazanonane) (Ⅰ); Synthesis of ${\wedge}-{\alpha}{\beta}$(ffm)-[Co(S,S-prodien)$H_2O$]$ClO_4$ (S,S-prodien(=1,9-bis(S)-prolyl-1,9-dioxo-2,5,8-triazanonane)의 입체특이성 반응(I); ${\wedge}-{\alpha}{\beta}$(ffm)-[Co(S,S-prodien)$H_2O$]$ClO_4$의 합성)

  • Lee, Bae Wook;Kim, Jin Woo;Lee, Dong Jin;Kim, Bong Gon;Oh, Chang Eon;Doh, Myung Ki
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.9
    • /
    • pp.465-470
    • /
    • 1997
  • A chiral pentadentate ligand, 1,9-bis(S)-prolyl-1,9-dioxo-2,5,8-triaza-nonane, (S,S-prochen) which shows the stereospecific reaction was synthesized from the reaction of S-proline and diethylenetriamine (dien). The red-violet $[Co(SS-prodien)H_2O]ClO_4$ was prepared by the oxidation of the aqueous solution dissolving $CoCl_2{\cdot}6H_2O$ and S,S-prodien. Elemental analysis, electronic absorption spectroscopy, and $^{13}C-NMR$ spectroscopy suggest that the geometrical structure of the Co(III) complex to be an ${\alpha}{\beta}$ (ffm) form, where the dien moiety of the ligand chelates the metal center to comprise a facial isomer, and an aqua ligand coordinates a cis site to the secondary nitrogens of the dien. Based upon the CD spectroscopic analysis, it seems that the absolute configuration of the ${\alpha}{\beta}$(ffm)-$[Co(SS-prodien)H_2O]ClO_4$ has the ${\Lambda}$-form.

  • PDF

ON THE FINITE DIFFERENCE OPERATOR $l_{N^2}$(u, v)

  • Woo, Gyung-Soo;Lee, Mi-Na;Seo, Tae-Young
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.97-103
    • /
    • 2000
  • In this work, we consider a finite difference operator $L^2_N$ corresponding to $$Lu:=-(u_{xx}+u_{yy})\;in\;{\Omega},\;u=0\;on\;{\partial}{\Omega}$$, in $S_{h^2,1}$. We derive the relation between the absolute value of the bilinear form $l_{N^2}$(u, v) on $S_{h^2,1}{\times}S_{h^2,1}$ and Sobolev $H^1$ norms.

  • PDF

Influence of Temperature and pH on the Stability of Dimethoxy Biphenyl Monocarboxylate${\cdot}$HCl Solutions

  • Choi, Woo-Chang;Kim, Dae-Duk;Shin, Young-Hee;Lee, Chi-Ho
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.159-163
    • /
    • 2001
  • The accelerated stability of dimethoxy biphenyl monocarboxylate.HCl (DDB-S) was investigated in 6 mg/mL water solution in the pH ranging 2-10 and the temperature of $45-85^{\circ}C$. The observed rate of degradation followed first-order kinetics. The energy of activation for DDB-S degradation was calculated to be 14.1 and 16.5 $Kcal/mole$ at pH 5 and in distilled watery respectively. The degradation rate constant ($K_{25^{\circ}C}$) obtained by trending line analysis of Arrhenius plots for DDB-S was $5.3{\times}10^{-6}h^{-1}$. The times to degrade 10% ($t_{10}$) and 50% $t_{500}$) at $K_{25^{\circ}C}$ were 829 and 5,416 days, respectively. DDB-S exhibited the fastest degradation at pH 10 and the slowest rate at pH 5. In addition, at $K_{65^{\circ}C}$, degradation rate constants of DDB-S were 0.066, 0.059, 5.460, 32.171, and $1.4{\times}10^{-6}h^{-1}$ at pH 2, 5, 8, 10 and in distilled water, respectively. These observations indicated that the rate-pH profile of DDB-S showed general acid-base catalysis reaction in the range of pH 2-10.

  • PDF