Korean J. Crystallography Vol. 18, No. 1/2, pp.1~6, 2007

(η⁵-Cp*)(Ir-B3)(1,2-S,S(CH₂SiMe₃)-*o*-carborane) (C₁₆H₃₅B₁₀IrS₂Si)의 합성 및 결정구조

조성일

서울시립대학교 화학공학과

The Synthesis and Crystal Structure of $(\eta^5-Cp^*)(Ir-B3)$ (1,2-S,S(CH₂SiMe₃)-*o*-carborane)(C₁₆H₃₅B₁₀IrS₂Si)

Sung Il Cho

Department of Chemical Engineering, University of Seoul, Jeonnong-dong 90, Seoul 130-743, Korea

요 약

유기금속 화합물 C₁₆H₃₅B₁₀IrS₂Si를 *o*-carborane으로 출발하여 Cp*Ir(S₂C₂B₁₀H₁₀)을 합성하고, Me₃SiCHN₂를 가하여 합성하였다. X-선 회절법을 이용하여 C₁₆H₃₅B₁₀IrS₂Si 화합물의 분자구조를 규명하였다. 이 화합물의 결정학적 자료는 monoclinic, space group P2₁/n, *a* = 10.1986(12) Å, *b* = 14.834(5) Å, *c* = 17.139 Å, β = 92.24(2)°, *Z* = 4, *V* = 2591.0(14) Å³이다. 결정 구조는 직접법으로 해석하였으며, 완전행렬최소자승법을 정밀화 하였으며 5080개의 회절 반점에 대하여 최종 신뢰도 인자 *R* = 0.053인 분자모형을 구하였다.

Abstract

An Organometallic compound, $C_{16}H_{35}B_{10}IrS_2Si$, was synthesized from *o*-carborane, $Cp*Ir(S_2C_2B_{10}H_{10})$, and Me₃SiCHN₂. The molecular structure of this complex has been determined by X-ray diffraction. Crystallographic data : monoclinic, space group P2₁/n, *a* = 10.1986(12) Å, *b* = 14.834(5) Å, *c* = 17.139 Å, $\beta = 92.24(2)^{\circ}$, Z = 4, V = 2591.0(14) Å³. The structure was solved by direct methods and refined by full-matrix leat-squares methods to give a model with a reliability factor *R* = 0.053 for 5080 reflections.

1. 서 론

최근들어 *o*-carborane 유도체 금속화합물들의 합성과 반응성에 관한 연구가 활발히 진행되고 있고,^{1.9)} 특히, *o*-carborane dithiolato ligand가 있는 유기금속착물의 합성과 연구가 활발히 진행되고 있다.¹⁰⁻¹²⁾ *o*-carboranyl 유도체 C₁₆H₃₅B₁₀IrS₂Si를 합 성하고 Ir-S, Ir-B의 배위결합을 포함한 분자내 상 호작용을 알아보고자 X-ray를 이용하여 분자구조 를 규명하였다. 또한, 분자의 입체적인 결합구조 와 배열상태를 밝히고자 한다.

2.실 험

1 몰 (0.144g)의 *o*-carborane 을 THF(20 ml)에 녹인 용액에 -78°C 하에서 2 당량의 *n*-BuLi을 천천히 적 가한 후 상온에서 6시간 동안 교반하였다. 이 용액 을 0°C에서 S₈ 2 당량을 천천히 적가한 후 상온에서 12시간 교반하였다. 생성된 Li₂[S₂C₂B₁₀H₁₀] 용액을 0.5 몰의 [Cp*IrCl₂]₂가 녹아있는 THF 용액에 -78°C 하에서 서서히 적가한 후 상온에서 2시간 동안 교 반하여 짙은 갈색의 금속화합물 Cp*Ir(S₂C₂B₁₀H₁₀) 을 얻을 수 있었다. 이렇게 얻은 Cp*Ir(S₂C₂B₁₀H₁₀) 에 0.5 몰의 Me₃SiCHN₂가 녹아있는 THF 용액을 -78°C 하에서 서서히 적가한 후 상온에서 12 시간 동안 교반하여 금속화합물 C₁₆H₃₅B₁₀IrS₂Si를 얻을 수 있었다. 톨루엔으로 재결정을 통하여, 순수한 결정인 본 화합물을 얻을 수 있었다.

크기가 0.2 × 0.3 × 0.3 mm 인 결정을 X-선 회절

Table 1.	Experimental	and	Crystal	data
----------	--------------	-----	---------	------

Chemical formular	$C_{16}H_{35}B_{10}IrS_{2}Si$
Molecular weight	$M_r = 619.95$
Crystal system	Monoclinic
Space group	$P2_1/n$
Unit cell dimension	a = 10.1986(12) Å
	b = 14.834(5) Å
	c = 17.139(7) Å
Unit cell volume	V = 2591.0(14) Å ³
Molecular number	Z = 4
per unit cell	
Radiation	λ (Mo-K α) = 0.71070 Å
Density	$D_c = 1.589 \text{ g/cm}^3$
Theta range for data collection	$\theta = 1.82 \cdot 25.98^{\circ}$
Absorption coefficient	$\mu = 5.364 \text{ mm}^{-1}$
Temperature	T = 293(2) K
Crystal size	$0.2 \times 0.3 \times 0.3 \text{ mm}^3$
Index range	$0 \le h \le 12$,
2	$0 \le k \le 18, -21 \le l \le 21$
Reflections collected/unique	5409/5080
Data/parameters	5080/288
Final reliability factor	R = 0.053

Fig. 1. Molecular structure and atomic numbering scheme and dis-placement ellipsoids drawn at the 50% probablility level. Hydrogen atoms have been omitted for clarity.

시험에 사용하였다. 1.82° ≤ θ ≤ 25.98° 사이에서 5080개의 회절반점을 측정한 바 *a* = 10.1986(12) Å, *b* = 14.834(5) Å, *c* = 17.1392 (7) Å, β = 92.24(2)°, *V* = 2591.0(14) Å³ 이었으며 결정계는 monoclinic 임을 알았다.

0≤h≤12, 0≤k≤18, -21≤l≤21 사이를 수집

Fig. 2. Unit cell packing structure, viewing along to a-axis. Displayment ellipsoids drawn at the 50% probability level.

Fig. 3. Unit cell packing structure, viewing along to c-axis. Displayment ellipsoids drawn at the 50% probability level.

하였으며 회절독립반점수는 5080 이고 사용한 파 장의 graphite로 단색화한 Mo-Kα(λ = 0.7107 Å)이 고 ω/20로 scan 하였다.

측정한 회절데이터는 Lorentz-Polarization factor 를 보정하였으며 흡수계수 μ = 3.862 mm⁻¹로 흡수 보정하였다. 모든 결정학적 자료는 Table 1에 나 타내었다.

구조해석은 SHELXS-86¹³⁾을 사용하여 F₀² 써서 직접법으로 하였으며 수소원자를 제외한 모든 원자에 anisotropic displace 인자들을 사용했다. SHELXS-93¹⁴⁾으로 full-matrix least-squares 방법을 정밀화하였다.

Table 2. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(A^2 \times 10^3)$ U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

	Х	У	Z	U(eq)	
Ir(1)	8120(1)	5897(1)	1374(1)	33(1)	
S (1)	9628(3)	7080(2)	1705(2)	42(1)	Tat
S(2)	10094(3)	5214(2)	952(2)	40(1)	Ir
Si(1)	10283(3)	8080(2)	165(2)	42(1)	Ir
C(1)	10451(11)	6306(8)	2352(6)	37(2)	Ir
C(2)	10656(11)	5260(8)	1950(6)	40(3)	Ir
C(3)	6641(12)	4985(9)	925(9)	59(4)	S(
C(4)	6554(10)	5726(9)	391(7)	46(3)	S(
C(5)	6237(10)	6490(9)	819(8)	47(3)	Si
C(6)	6093(11)	6265(9)	1625(8)	51(3)	Si
C(7)	6278(12)	5291(9)	1677(7)	50(3)	C
C(8)	6897(15)	4017(9)	710(12)	81(5)	C
C(9)	6687(14)	5666(13)	-467(8)	78(5)	C
C(10)	5992(16)	7427(11)	514(12)	90(6)	C
C(11)	5672(16)	6844(13)	2274(10)	96(6)	C
C(12)	6089(18)	4724(14)	2389(11)	98(6)	C
C(13)	10885(12)	7378(9)	1027(7)	52(3)	C
C(14)	9233(16)	9011(8)	528(9)	64(4)	C
C(15)	9393(15)	7361(10)	-564(8)	65(4)	C
C(16)	11793(14)	8547(9)	-265(8)	60(4)	В
B(3)	11971(15)	5858(11)	2316(9)	57(4)	В
B(4)	11427(16)	6452(11)	3152(9)	57(4)	В
B(5)	9722(16)	6205(12)	3211(8)	56(4)	В
B(6)	9194(12)	5523(10)	2381(7)	38(3)	В
B(7)	11781(15)	4681(12)	2481(10)	58(4)	В
B(8)	12237(14)	5417(12)	3263(8)	56(4)	В
B(9)	10873(18)	5640(14)	3804(9)	69(5)	В
B(10)	9461(15)	5062(12)	3356(8)	56(4)	В
B(11)	10048(15)	4488(11)	2566(9)	52(4)	В
B(12)	11056(18)	4571(12)	3407(10)	66(5)	В

정밀화 계산은 $\sum w(|F_o|^2 - |F_c|^2)^2$ 을 최소화하였으며 $\omega = 1/[\sigma^2(F_o^2) + (0.1319 \times P)v + 1.08 \times P], P = [Max(F_o^2) + 2 \times F_c^2]/3$ 이고 변수의 수는 288 이다. 최종신뢰도는 독립회절반점수인 5080개에 대하여 R = 0.053이다. 이때 이용한 원자 산란인자는 International Table for X-ray Crystallography¹⁵⁾에 수 록된 값을 이용하였다.

3. 결과 및 고찰

C₁₆H₃₅B₁₀IrS₂Si 분자와 원자번호 부여에 대한 입 체 그림을 ORTEP으로 Fig. 1, 단위 세포 내에서 의 분자배열은 Fig. 2와 Fig. 3에 a축과 c축의 projection을 나타내었다. Table 2에는 최종 수소를 제외한 모든 원자의 좌표를, Table 3에는 결합길 이를, Table 4에는 결합각을 나타내었다. Table 5 에는 비등방성온도인자를 각각 나타내었다.

Fable 3. Bond lengths [Å]

Ir(1)-B(6)	2.082(12)	Ir(1)-C(3)	2.147(12)
Ir(1)-C(7)	2.164(11)	Ir(1)-C(6)	2.197(11)
Ir(1)-C(5)	2.286(11)	Ir(1)-C(4)	2.290(11)
Ir(1)-S(1)	2.387(3)	Ir(1)-S(2)	2.391(3)
S(1)-C(1)	1.784(11)	S(1)-C(13)	1.818(13)
S(2)-C(2)	1.784(11)	Si(1)-C(15)	1.852(13)
Si(1)-C(16)	1.865(13)	Si(1)-C(14)	1.869(14)
Si(1)-C(13)	1.892(11)	C(1)-B(4)	1.676(17)
C(1)-B(5)	1.681(17)	C(1)-B(3)	1.690(19)
C(1)-C(2)	1.713(16)	C(1)-B(6)	1.732(17)
C(2)-B(7)	1.673(18)	C(2)-B(11)	1.692(19)
C(2)-B(3)	1.706(17)	C(2)-B(6)	1.734(16)
C(3)-C(7)	1.428(18)	C(3)-C(4)	1.430(19)
C(3)-C(8)	1.508(18)	C(4)-C(5)	1.395(17)
C(4)-C(9)	1.486(18)	C(5)-C(6)	1.434(18)
C(5)-C(10)	1.502(19)	C(6)-C(7)	1.459(19)
C(6)-C(11)	1.482(17)	C(7)-C(12)	1.501(19)
B(3)-B(8)	1.76(2)	B(3)-B(7)	1.78(2)
B(3)-B(4)	1.79(2)	B(4)-B(8)	1.75(2)
B(4)-B(9)	1.75(2)	B(4)-B(5)	1.78(2)
B(5)-B(10)	1.74(2)	B(5)-B(9)	1.74(2)
B(5)-B(6)	1.81(2)	B(6)-B(11)	1.79(2)
B(6)-B(10)	1.816(19)	B(7)-B(8)	1.78(2)
B(7)-B(12)	1.78(2)	B(7)-B(11)	1.80(2)
B(8)-B(9)	1.73(2)	B(8)-B(12)	1.76(2)
B(9)-B(12)	1.74(3)	B(9)-B(10)	1.82(2)
B(10)-B(11)	1.73(2)	B(10)-B(12)	1.78(2)
B(11)-B(12)	1.74(2)		

4

Table 4. Bond angles [deg]

uble 4. Dona angles	lacel				
B(6)-Ir(1)-C(3)	117.9(6)	B(6)-Ir(1)-C(7)	97.1(5)	C(1)-B(3)-B(8)	102.7(11)
C(3)-Ir(1)-C(7)	38.7(5)	B(6)-Ir(1)-C(6)	111.9(5)	C(1)-B(3)-B(7)	105.9(10)
C(3)-Ir(1)-C(6)	64.7(5)	C(7)-Ir(1)-C(6)	39.1(5)	B(8)-B(3)-B(7)	60.2(9)
B(6)-Ir(1)-C(5)	148.6(5)	C(3)-Ir(1)-C(5)	61.7(5)	C(2)-B(3)-B(4)	106.6(11)
C(7)-Ir(1)-C(5)	62.4(5)	C(6)-Ir(1)-C(5)	37.3(5)	B(7)-B(3)-B(4)	108.5(11)
B(6)-Ir(1)-C(4)	155.4(5)	C(3)-Ir(1)-C(4)	37.4(5)	C(1)-B(4)-B(9)	103.7(11)
C(7)-Ir(1)-C(4)	62.8(4)	C(6)-Ir(1)-C(4)	62.4(4)	C(1)-B(4)-B(5)	58.0(7)
C(5)-Ir(1)-C(4)	35.5(4)	B(6)-Ir(1)-S(1)	71.7(4)	B(9)-B(4)-B(5)	58.9(10)
C(3)-Ir(1)-S(1)	170.3(4)	C(7)-Ir(1)-S(1)	143.7(4)	B(8)-B(4)-B(3)	59.7(9)
C(6)-Ir(1)-S(1)	112.0(3)	C(5)-Ir(1)-S(1)	109.8(3)	B(5)-B(4)-B(3)	106.1(10)
C(4)-Ir(1)-S(1)	132.9(3)	B(6)- $Ir(1)$ - $S(2)$	73.5(4)	C(1)-B(5)-B(9)	104.1(11)
C(3)-Ir(1)-S(2)	102.3(4)	C(7)-Ir(1)-S(2)	130.2(4)	C(1)-B(5)-B(4)	57.7(8)
C(6)-Ir(1)-S(2)	167.0(3)	C(5)-Ir(1)-S(2)	137.8(3)	B(9)-B(5)-B(4)	59.7(10)
C(4)-Ir(1)-S(2)	107.6(3)	S(1)-Ir(1)- $S(2)$	80.86(10)	B(10)-B(5)-B(6)	61.6(9)
C(1)-S(1)-C(13)	103.2(5)	C(1)-S(1)-Ir(1)	87.6(4)	B(4)-B(5)-B(6)	109.3(10)
C(13)-S(1)-Ir(1)	119.4(4)	C(2)-S(2)-Ir(1)	86.4(4)	C(1)-B(6)-B(11)	103.0(9)
C(15)-Si(1)-C(16)	109.8(7)	C(15)-Si(1)-C(14)	112.2(7)	C(1)-B(6)-B(5)	56.6(7)
C(16)-Si(1)-C(14)	110.5(6)	C(15)-Si(1)-C(13)	110.2(6)	B(11)-B(6)-B(5)	102.3(10)
C(16)-Si(1)-C(13)	105.3(6)	C(14)-Si(1)-C(13)	108.7(7)	C(2)-B(6)-B(10)	101.9(9)
B(4)-C(1)-B(5)	64.2(9)	B(4)-C(1)-B(3)	64.2(9)	B(5)-B(6)-B(10)	57.2(8)
B(5)-C(1)-B(3)	115.8(10)	B(4)-C(1)-C(2)	111.6(9)	C(2)-B(6)-Ir(1)	98.1(7)
B(5)-C(1)-C(2)	109.7(10)	B(3)-C(1)-C(2)	60.2(7)	B(5)-B(6)-Ir(1)	129.2(10)
B(4)-C(1)-B(6)	118.7(9)	B(5)-C(1)-B(6)	64.0(8)	C(2)-B(7)-B(8)	104.4(11)
B(3)-C(1)-B(6)	114.7(9)	C(2)-C(1)-B(6)	60.4(7)	C(2)-B(3)-B(8)	103.7(10)
B(4)-C(1)-S(1)	132.5(9)	B(5)-C(1)-S(1)	112.8(9)	C(2)-B(3)-B(7)	57 3(8)
B(3)-C(1)-S(1)	129.8(8)	C(2)-C(1)-S(1)	113.2(7)	C(1)-B(3)-B(4)	57 5(8)
B(6)-C(1)-S(1)	96.8(7)	B(7)-C(2)-B(11)	64 7(9)	B(8)-B(3)-B(4)	59 1(9)
B(7)-C(2)-B(3)	63 6(9)	B(11)-C(2)-B(3)	115 1(10)	C(1)-B(4)-B(8)	103 8(11)
B(7)-C(2)-C(1)	109.8(9)	B(11)-C(2)-C(1)	108.0(9)	B(8)-B(4)-B(9)	59 3(10)
B(3)-C(2)-C(1)	592(8)	B(7)-C(2)-B(6)	117.8(10)	B(8)-B(4)-B(5)	105.7(12)
B(11)-C(2)-B(6)	62 9(8)	B(3)-C(2)-B(6)	113.8(10)	C(1)-B(4)-B(3)	58 3(8)
C(1)-C(2)-B(6)	60.3(7)	B(7)-C(2)-S(2)	133 5(9)	B(9)-B(4)-B(3)	106 9(12)
B(11)-C(2)-S(2)	1174(9)	B(3)-C(2)-S(2)	1262(8)	C(1)-B(5)-B(10)	106.7(11)
C(1)-C(2)-S(2)	117.1(3) 112 4(7)	B(6)-C(2)-S(2)	99.6(7)	B(10)-B(5)-B(9)	63 2(10)
C(7)- $C(3)$ - $C(4)$	108.7(11)	C(7)- $C(3)$ - $C(8)$	125.2(14)	B(10) - B(5) - B(4)	1114(12)
C(4)-C(3)-C(8)	125.6(14)	C(7)- $C(3)$ -Ir(1)	71.3(7)	C(1)- $B(5)$ - $B(6)$	593(7)
C(4)-C(3)-Ir(1)	76 7(7)	C(8)-C(3)-Ir(1)	1242(9)	B(9)-B(5)-B(6)	111 3(13)
C(5)-C(4)-C(3)	1074(11)	C(5) - C(4) - C(9)	1269(13)	C(1)-B(6)-C(2)	59 3(7)
C(3)-C(4)-C(9)	125 6(13)	C(5) - C(4) - Ir(1)	72.1(6)	C(2)-B(6)-B(11)	57 4(8)
C(3)-C(4)-Ir(1)	65 9(6)	C(9)-C(4)-Ir(1)	130 3(8)	C(2) - B(6) - B(5)	103 1(9)
C(4)- $C(5)$ - $C(6)$	110 5(11)	C(4) - C(5) - C(10)	1274(13)	C(1)-B(6)-B(10)	101 2(9)
C(6)- $C(5)$ - $C(10)$	122 0(13)	C(4) - C(5) - Ir(1)	72 4(6)	B(11)- $B(6)$ - $B(10)$	57 2(8)
C(6)- $C(5)$ - $Ir(1)$	68 0(6)	C(10) - C(5) - Ir(1)	128.8(9)	C(1)-B(6)-Ir(1)	99.4(7)
C(5)- $C(6)$ - $C(7)$	105 8(10)	C(5) - C(6) - C(11)	120.0(9) 129 1(14)	$B(11)_{B(6)_{Ir}(1)}$	127.8(9)
C(7)- $C(6)$ - $C(11)$	$124\ 7(14)$	C(5) - C(6) - Ir(1)	74.7(6)	$B(10)_{B(6)_{-1}(1)}$	127.0(9) 156.6(9)
C(7)- $C(6)$ -Ir(1)	693(7)	C(11)- $C(6)$ - $Ir(1)$	1263(10)	$C(2)_{B}(7)_{B}(3)$	59 1(8)
C(5)-C(6)-C(7)	105.8(10)	C(5)-C(6)-C(11)	129 1(14)	B(11)-B(6)-Ir(1)	127 8(9)
C(7)- $C(6)$ - $C(11)$	$124\ 7(14)$	C(5) - C(6) - Ir(1)	74.7(6)	$B(10)_{B(6)_{-1}(1)}$	127.0(9) 156.6(9)
C(7)- $C(6)$ - $U(11)$	127.7(17) 693(7)	C(11) - C(6) Ir(1)	1263(10)	$C(2)_{B(7)} B(3)$	50.0(3)
C(3) - C(7) - C(6)	107.3(11)	C(3) = C(7) = C(12)	120.3(10) 127.0(14)	B(8) - B(7) - B(3)	59.1(8)
C(3) = C(7) = C(0) C(6) = C(7) = C(12)	107.3(11) 125.7(14)	C(3) - C(7) - C(12) $C(3) - C(7) - L_{r}(1)$	127.0(14) 70.0(7)	B(8) B(7) B(12)	50 3(0)
C(0) - C(7) - C(12) C(6) C(7) - U(12)	123.7(14) 71.7(6)	$C(3) - C(7) - \Pi(1)$ $C(12) - C(7) - \Pi(1)$	124.6(10)	C(2) B(7) B(12)	103 4(11)
C(0) - C(7) - If(1) S(1) - C(13) - S(1)	11/ 7(7)	C(12)-C(7)-If(1) C(1) B(3) C(2)	124.0(10)	C(2) - D(7) - D(12) B(3) - B(7) - D(12)	103.4(11) 106.4(12)
3(1)-C(13)-31(1)	114./(/)	U(1) - D(3) - U(2)	00.0(7)	D(J)-D(/)-D(12)	100.4(12)

	C(2)-B(7)-B(11)	58.1(8)	B(8)-B(7)-B(11)	105.4(12)	B(12)-B(11)-B(6)	110.7(12)
	B(3)-B(7)-B(11)	106.4(11)	B(12)-B(7)-B(11)	58.1(9)	B(10)-B(11)-B(7)	110.9(12)
	B(9)-B(8)-B(4)	60.4(10)	B(9)-B(8)-B(3)	108.9(11)	B(6)-B(11)-B(7)	108.8(11)
	B(4)-B(8)-B(3)	61.2(9)	B(9)-B(8)-B(12)	59.6(10)	B(9)-B(12)-B(8)	59.3(10)
	B(4)-B(8)-B(12)	108.5(11)	B(3)-B(8)-B(12)	108.1(10)	B(9)-B(12)-B(10)	62.3(10)
	B(9)-B(8)-B(7)	109.2(11)	B(4)-B(8)-B(7)	110.3(10)	B(8)-B(12)-B(10)	109.3(12)
	B(3)-B(8)-B(7)	60.4(9)	B(12)-B(8)-B(7)	60.5(10)	B(11)-B(12)-B(7)	61.4(9)
	B(8)-B(9)-B(5)	108.5(11)	B(8)-B(9)-B(12)	61.0(11)	B(10)-B(12)-B(7)	109.2(11)
	B(5)-B(9)-B(12)	106.9(11)	B(8)-B(9)-B(4)	60.3(10)	B(10)-B(11)-B(6)	62.2(9)
	B(5)-B(9)-B(4)	61.5(9)	B(12)-B(9)-B(4)	109.5(12)	C(2)-B(11)-B(7)	57.1(8)
	B(8)-B(9)-B(10)	108.8(11)	B(5)-B(9)-B(10)	58.3(9)	B(12)-B(11)-B(7)	60.4(9)
	B(12)-B(9)-B(10)	60.0(10)	B(4)-B(9)-B(10)	108.9(11)	B(9)-B(12)-B(11)	108.7(12)
	B(11)-B(10)-B(5)	108.1(11)	B(11)-B(10)-B(12)	59.5(9)	B(11)-B(12)-B(8)	108.6(11)
	B(5)-B(10)-B(12)	105.2(11)	B(11)-B(10)-B(6)	60.6(8)	B(11)-B(12)-B(10)	58.7(9)
	B(5)-B(10)-B(6)	61.2(8)	B(12)-B(10)-B(6)	107.6(11)	B(9)-B(12)-B(7)	108.7(12)
	B(11)-B(10)-B(9)	105.7(11)	B(5)-B(10)-B(9)	58.5(10)	B(8)-B(12)-B(7)	60.2(9)
	B(12)-B(10)-B(9)	57.7(10)	B(6)-B(10)-B(9)	107.4(11)	B(10)-B(11)-B(12)	61.8(9)
	C(2)-B(11)-B(10)	107.6(11)	C(2)-B(11)-B(12)	104.4(11)	C(2)-B(11)-B(6)	59.7(7)
-						

Table 5. Anisotropic displacement parameters ($Å^2 \times 10^3$). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]$

Table 4. Continued

	U_{11}	U ₂₂	U_{33}	U ₂₃	U_{13}	U_{12}
Ir(1)	19(1)	41(1)	40(1)	0(1)	1(1)	-2(1)
S(1)	36(2)	38(2)	51(2)	1(1)	-1(1)	-5(1)
S(2)	25(1)	55(2)	41(1)	-7(1)	0(1)	7(1)
Si(1)	44(2)	38(2)	44(2)	4(1)	0(1)	-4(1)
C(1)	29(6)	38(6)	42(6)	3(5)	-2(5)	-5(5)
C(2)	27(5)	54(7)	39(6)	1(5)	-1(5)	-1(5)
C(3)	20(6)	60(8)	96(11)	-23(8)	-5(6)	-6(6)
C(4)	14(5)	74(9)	50(7)	-2(6)	-2(4)	0(5)
C(5)	17(5)	57(8)	67(8)	10(6)	-13(5)	0(5)
C(6)	22(6)	67(8)	65(8)	-25(7)	5(5)	9(6)
C(7)	32(6)	57(8)	61(8)	10(6)	-1(6)	-18(6)
C(8)	42(8)	52(9)	150(16)	-25(9)	-2(9)	-1(7)
C(9)	33(7)	141(16)	59(8)	-21(9)	-2(6)	-2(9)
C(10)	48(9)	68(10)	153(17)	18(11)	-3(10)	18(8)
C(11)	51(9)	127(16)	112(14)	-58(12)	23(9)	14(10)
C(12)	64(11)	120(16)	112(14)	31(12)	22(10)	-43(11)
C(13)	36(6)	66(8)	54(7)	19(6)	-10(5)	-13(6)
C(14)	76(10)	44(7)	74(9)	11(7)	23(8)	2(7)
C(15)	58(9)	61(8)	76(10)	-8(7)	-13(7)	0(7)
C(16)	58(9)	54(8)	71(9)	13(7)	22(7)	-8(7)
B(3)	41(8)	76(11)	51(8)	6(8)	-18(6)	-23(8)
B(4)	45(9)	63(10)	62(9)	-4(8)	-19(7)	-3(8)
B(5)	47(9)	88(12)	33(7)	-4(7)	6(6)	-7(8)
B(6)	23(6)	57(8)	34(6)	-2(6)	0(5)	-4(6)
B(7)	40(8)	65(10)	69(10)	-1(8)	-9(7)	8(8)
B(8)	33(7)	91(12)	41(8)	6(8)	-10(6)	1(8)
B(9)	60(10)	111(15)	35(7)	-6(8)	-9(7)	-13(10)
B(10)	40(8)	86(12)	41(7)	0(8)	-2(6)	-10(8)
B(11)	47(8)	57(9)	52(8)	15(7)	-6(7)	3(7)
B(12)	60(11)	68(11)	67(10)	18(9)	-14(8)	2(9)

Table 6. Least-squares planes (x, y, z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

* 0.0745 (40) Ir1
* -0.0877 (48) S2
* 0.1182 (65) C2
* -0.1050 (57) B6

Table 7. Angle to previous plane (with approximateesd) = 80.35

*	-0.1015	(40)	Ir 1
*	0.1182	(45)	S 1
*	-0.1598	(60)	C1
*	0.1430	(54)	B6

이 분자의 모델에서 끝부분에 있는 pentamethylcyclopentadienyl기의 C8, C9, C10, C11, C12의 온 도인자는 큰 것으로 나타났으며 Fig. 1에서도 크 게 나타난 것을 볼 수 있다.

Table 6과 Table 7에서 보듯이 Ir1, S2, C2, B6 원자와 Ir1, S1, C1, B6 원자가 거의 평면을 이루 는 찌그러진 사각형을 이루고 있는 것으로 나타 나있다.

감사의 글

본 연구는 2005 년도 서울시립대학교 연구년

교수 연구비 지원으로 이루어졌으며 이에 감사드 립니다.

참고문헌

- Lee, J. D., Baek, C. K., Ko, J., Park, K., Cho, S., Min, S. K. and Kang, S. O., *Organometallics*, 18, 2189 (1999).
- Kim, D. H., Won, J. H., Kim, S. J., Ko, J., Kim, S. H., Cho, S. and Kang, S. O., *Organometallics*, 20, 4298 (2001).
- Lee, J. D., Lee, C. H., Nakamura, H., Ko, J. and Kang, S. O., *Tetrahedron Lett.*, 43, 5483 (2002).
- Abizanda, D., Crespo, O., Gimeno, M. C., Jimenez, J. and Laguna, A., *Chem. Eur. J.*, 9, 3310 (2003).
- Usyatinsky, A. Y., Budkina, K. V., Petrovskii, P. V. and Bregadze, V. I., *Russ. Chem. Bull.*, 44, 724 (1995).
- 6) Lee, J. D., Ko, J., Cheong, M. and Kang, S. O., *Organometallics*, **24**, 5845 (2005).
- 7) Weinstein, J. A., Tierney, M. T., Davies, E. S.,

Base, K., Robeiro, A. A. and Grinstaff, M. W., *Inorg. Chem.*, **45**, 4544 (2006).

- Hou, X. F., Wang, X. C., Wang, J. Q. and Jin, G. X., J. Orgnomet. Chem., 689, 2228 (2004).
- 9) Kang, S. O., Lee, J. and Ko, J., *Coordination Chemistry Reviews*, 231, 47 (2002).
- 10) Yu, X. F., Jin, G. X., Hu, N. H. and Weng, L. H., Organometallics, 21, 5540 (2002).
- Bae, J. Y., Park, Y. I., Ko, J., Park, K. I., Cho, S. I. and Kang, S. O., *Inorg. Chim. Acta.*, 289, 141 (1999).
- 12) Kim, B. Y., Lee, C., Chung, S. W., Lee, Y. J., Pak, J. Y., Ko, J. and Kang, S. O., *J. Organomet. Chem.*, 688, 236 (2003).
- 13) Sheldrick, G. M., SHELXS-86. Program for the Solution of Crystal Structures from diffraction Data, Univ. of Göttingen, Germany (1986).
- 14) Sheldrick, G. M. SHELXS-93. Program for the *Refinement of Crystal Structures*, Univ. of Göttingen, Germany (1993).
- 15) International Table for X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham (1974).