• Title/Summary/Keyword: $H_2$-TPR

Search Result 126, Processing Time 0.023 seconds

In Situ-DRIFTS Study of Rh Promoted CuCo/Al2O3 for Ethanol Synthesis via CO Hydrogenation

  • Li, Fang;Ma, Hongfang;Zhang, Haitao;Ying, Weiyong;Fang, Dingye
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2726-2732
    • /
    • 2014
  • The promoting effect of rhodium on the structure and activity of the supported Cu-Co based catalysts for CO hydrogenation was investigated in detail. The samples were characterized by DRIFTS, $N_2$-adsorption, XRD, $H_2$-TPR, $H_2$-TPD and XPS. The results indicated that the introduction of rhodium to Cu-Co catalysts resulted in modification of metal dispersion, reducibility and crystal structure. DRIFTS results of CO hydrogenation at reaction condition (P=2 MPa, $T=260^{\circ}C$) indicated the addition of 1 wt % rhodium improved hydrogenation ability of Cu-Co catalysts. The ethanol selectivity and CO conversion were both improved by 1 wt % Rh promoted Cu-Co based catalysts. The alcohol distribution over un-promoted and rhodium promoted Cu-Co based catalysts obeys A-S-F rule and higher chain growth probability was got on rhodium promoted catalyst.

Experimental Study on Thermochemical Water Splitting Hydrogen Production Using $MnO_2/Mn_2O_3$/NaOH System Added with $ZrO_2$ ($ZrO_2$ 첨가 $MnO_2/Mn_2O_3$/NaOH 계를 이용한 열화학적 물분해 수소제조 실험 연구)

  • Cha, Kwang-Seo;Ryu, Jae-Chun;Lee, Dong-Hee;Kim, Young-Ho;Park, Chu-Sik;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.353-361
    • /
    • 2006
  • As one of the thermochemical water splitting hydrogen production cycles, which could be operated at the lower temperature below 1200 K, we investigated the feasibility of the cyclic operation of Ispra Mark 2 cycle with the addition of $ZrO_2$. The cycle is theoretically composed of three reaction steps; (1) 1st step($2MnO_2{\rightarrow}Mn_2O_3+0.5O_2$), (2) 2nd step($Mn_2O_3+4NaOH{\rightarrow}2Na_2O{\cdot}MnO_2+H_2+H_2O$) and (3) 3rd step($2Na_2O{\cdot}MnO_2H_2O{\rightarrow}4NaOH+2MnO_2$). From the TPR tests, the temperature ranges for $O_2$ production in 1st step and $H_2$ production in 2nd step were $550{\sim}750^{\circ}C$ and $650{\sim}750^{\circ}C$, respectively. In $MnO_2/Mn_2O_3/NaOH$ system, the formation of molten products due to the reaction between manganese oxides and NaOH were greatly decreased with the addition of $ZrO_2$. In addition, the results of a cyclic test were discussed with the viewpoint of $H_2$ production amounts and the feasibility of the process improvement.

V2O5WO3/TiO2 Catalyst Prepared on Nanodispersed TiO2 for NH3-SCR: Relationship between D ispersed Particle Size of TiO2 and Maximum Decomposition Temperature of NOx (NH3-SCR용 나노분산 TiO2 담체상에 제조된 V2O5WO3/TiO2 촉매: TiO2 분산입도와 NOx 최대 분해온도와의 상관성)

  • Min Chae, Seo;Se-Min, Ban;Jae Gu, Heo;Yong Sik, Chu;Kyung-Seok, Moon;Dae-Sung, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.496-507
    • /
    • 2022
  • For the selective catalytic reduction of NOx with ammonia (NH3-SCR), a V2O5WO3/TiO2 (VW/nTi) catalyst was prepared using V2O5 and WO3 on a nanodispersed TiO2 (nTi) support by simple impregnation process. The nTi support was dispersed for 0~3 hrs under controlled bead-milling in ethanol. The average particle size (D50) of nTi was reduced from 582 nm to 93 nm depending on the milling time. The NOx activity of these catalysts with maximum temperature shift was influenced by the dispersion of the TiO2. For the V0.5W2/nTi-0h catalyst, prepared with 582 nm nTi-0h before milling, the decomposition temperature with over 94 % NOx conversion had a narrow temperature window, within the range of 365-391 ℃. Similarly, the V0.5W2/nTi-2h catalyst, prepared with 107 nm nTi-2h bead-milled for 2hrs, showed a broad temperature window in the range of 358~450 ℃. However, the V0.5W2/Ti catalyst (D50 = 2.4 ㎛, aqueous, without milling) was observed at 325-385 ℃. Our results could pave the way for the production of effective NOx decomposition catalysts with a higher temperature range. This approach is also better at facilitating the dispersion on the support material. NH3-TPD, H2-TPR, FT-IR, and XPS were used to investigate the role of nTi in the DeNOx catalyst.

Characterization of Ha29, a Specific Gene for Helicoverpa armigera Single-nucleocapsid Nucleopolyhedrovirus

  • Guo, Zhong-Jian;An, Shi-Heng;Wang, Dun;Liu, Yan-He;Kumar, V. Shyam;Zhang, Chuan-Xi
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.354-359
    • /
    • 2005
  • Open reading frame 29 (ha29) is a gene specific for Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HearSNPV). Sequence analyses showed that the transcription factor Tfb2 motif, bromodomain and Half-A-TPR (HAT) repeat were present at aa 66-82, 4-76, 55-90 of the Ha29 protein respectively. The product of Ha29 was detected in HearSNPV-infected HzAM1 cells at 3 h post-infection. Western blot analysis using a polyclonal antibody produced by immunizing a rabbit with purified GST-Ha29 fusion protein indicates that Ha29 is an early gene. The size of Ha29 product in infected HzAM1 cells was about 25 kDa, which was larger than the presumed size of 20.4 kDa. Tunicamycin treatment of HearSNPV-infected HzAM1 cells suggested that the Ha29 protein is N-glycosylated. Fluorescent confocal laser scanning microscope examination, and Western blot analysis of purified budded virus (BVs), occlusion-derived virus (ODVs), cell nuclear and cytoplasmic fraction, showed that the Ha29 protein was localized in the nucleus. Our results suggested that ha29 of HearSNPV encodes a non-structurally functional protein that may be associated with virus gene transcription in Helicoverpa hosts.

Regenerability of a Ni catalyst in the catalytic steam reforming of biomass pyrolysis volatiles

  • Arregi, Aitor;Lopez, Gartzen;Amutio, Maider;Barbarias, Itsaso;Santamaria, Laura;Bilbao, Javier;Olazar, Martin
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.69-78
    • /
    • 2018
  • A study has been carried out of the regenerability of a commercial Ni catalyst used in the steam reforming of the volatiles from biomass pyrolysis (gases and bio-oil), determining the evolution of the reaction indices (conversion, product yields and $H_2$ production) in successive reaction-regeneration cycles. The causes of catalyst deactivation (coke deposition and Ni sintering) have been ascertained characterizing the deactivated and regenerated catalysts by TPO, TEM, TPR and XRD. Catalyst activity is not fully recovered by coke combustion in the first cycles due to the irreversible deactivation by Ni sintering, but the catalyst reaches a pseudo-stable state beyond the fourth cycle, reproducing its behaviour in subsequent cycles.

Effect of Al Precursor Addition Time on Catalytic Characteristic of Cu/ZnO/Al2O3 Catalyst for Water Gas Shift Reaction (Water Gas Shift 반응을 위한 Cu/ZnO/Al2O3 촉매에서 Al 전구체 투입시간에 따른 촉매 특성 연구)

  • BAEK, JEONG HUN;JEONG, JEONG MIN;PARK, JI HYE;YI, KWANG BOK;RHEE, YOUNG WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.423-430
    • /
    • 2015
  • $Cu/ZnO/Al_2O_3$ catalysts for water gas shift (WGS) reaction were synthesized by co-precipitation method with the fixed molar ratio of Cu/Zn/Al precursors as 45/45/10. Copper and zinc precursor were added into sodium carbonate solution for precipitation and aged for 24h. During the aging period, aluminum precursor was added into the aging solution with different time gap from the precipitation starting point: 6h, 12h, and 18h. The resulting catalysts were characterized with SEM, XRD, BET surface measurement, $N_2O$ chemisorption, TPR, and $NH_3$-TPD analysis. The catalytic activity tests were carried out at a GHSV of $27,986h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The catalyst morphology and crystalline structures were not affected by aluminum precursor addition time. The Cu dispersion degree, surface area, and pore diameter depended on the aging time of Cu-Zn precipitate without the presence of $Al_2O_3$ precursor. Also, the interaction between the active substance and $Al_2O_3$ became more stronger as aging duration, with Al precursor presented in the solution, increased. Therefore, it was confirmed that aluminum precursor addition time affected the catalytic characteristics and their catalytic activities.

Preparation of 27Ni6Zr4O143M(M=Mg, Ca, Sr, or Ba)O/70 Zeolite Y Catalysts and Hydrogen-rich Gas Production by Ethanol Steam Reforming

  • Kim, Dongjin;Lee, Jun Su;Lee, Gayoung;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2073-2080
    • /
    • 2013
  • In this study the effects of adding alkaline-earth (IIA) metal oxides to NiZr-loaded Zeolite Y catalysts were investigated on hydrogen rich production by ethanol steam reforming (ESR). Four kinds of alkaline-earth metal (Mg, Ca, Sr, or Ba) oxides of 3.0% by weight were loaded between the $Ni_6Zr_4O_{14}$ main catalytic species and the microporous Zeolite Y support. The characterizations of these catalysts were examined by XRD, TEM, $H_2$-TPR, $NH_3$-TPD, and XPS. Catalytic performances during ESR were found to depend on the basicity of the added alkaline-earth metal oxides and $H_2$ production and ethanol conversion were maximized to 82% and 98% respectively in 27($Ni_6Zr_4O_{14}$)3MgO/70Zeolite Y catalyst at $600^{\circ}C$. Many carbon deposits and carbon nano fibers were seen on the surface of $30Ni_6Zr_4O_{14}$/70Zeolite Y catalyst but lesser amounts were observed on alkaline-earth metal oxide-loaded 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts in TEM photos after ESR. This study demonstrates that hydrogen yields from ESR are closely related to the acidities of catalysts and that alkaline-earth metal oxides reduce the acidities of 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts and promote hydrogen evolution by preventing progression to hydrocarbons.

A Study on the Synthesis of CH4 from CO2 of Biogas Using 40 wt% Ni-Mg Catalyst: Characteristic Comparison of Commercial Catalyst and 40 wt% Ni Catalyt (40 wt% Ni 촉매에서 바이오가스 중 CO2로부터 메탄제조에 관한 연구: Commercial Catalyst와의 특성 비교분석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.388-400
    • /
    • 2021
  • Power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technology produces hydrogen by decomposing water from renewable energy (electricity) and the other produces CH4 by reacting hydrogen with CO2. This study is an experimental study to produce CH4 by reacting CO2 of biogas with hydrogen using a 40 wt% Ni-Mg-Al catalyst and a commercial catalyst. Catalyst characteristics were analyzed through H2-TPR, XRD, and XPS instruments of 40% Ni catalyst and commercial catalyst. The effect on the CO2 conversion rate and CH4 selectivity was analyzed, and the activities of a 40% Ni catalyst and a commercial catalyst were compared. As a result of experiment, In the case of a 40 wt% catalyst, the maximum CO2 conversion rate showed 77% at the reaction temperature of 400℃. Meanwhile, the commercial catalyst showed a maximum CO2 conversion rate of 60% at 450℃. When 50% of CO was added to the CO2 methanation reaction, the CO2 conversion rate was increased by about 5%. This is considered to be due to the atmosphere in which the CO reaction can occur without the process of converting to CH4 after forming carbon and CO as intermediates in terms of the CO2 mechanism on the catalyst surface.

A Study on Na effect of Pt-Na/Ce(1-x)Zr(x)O2 Catalyst Structure for WGS Reaction (WGS 반응에서 Pt-Na/Ce(1-x)Zr(x)O2 촉매의 구조에 따른 Na 영향에 대한 연구)

  • Shim, Jae-Oh;Jeong, Dae-Woon;Jang, Won-Jun;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.654-659
    • /
    • 2012
  • The interest in water gas shift (WGS) reaction has grown significantly, as a result of the recent advances in fuel cell technology and the need to develop small-scale fuel processors. Recently, researchers have tried to overcome the disadvantages of the commercial WGS catalysts. As a consequence, supported Pt catalysts have attracted a lot of researchers due to high activity and stability for WGS at low temperatures. In this study, $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts with various Ce/Zr ratio have been applied to WGS at a gas hourly space velocity (GHSV) of $45,515h^{-1}$. According to TPR patterns of $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts, the reducibility increases with decreasing the $ZrO_2$ content. As a result, Cubic structure $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts exhibited higher CO conversion than tetragonal structure $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts. Expecially, Pt-Na/$CeO_2$ exhibited the highest CO conversion as well as 100% selectivity to $CO_2$. Moreover, Pt-Na/$CeO_2$ catalyst showed relatively stable activity with time on stream. The high activity of cubic structure Pt-Na/$CeO_2$ catalyst was correlated to its higher oxygen storage capacity (OSC) of $CeO_2$ and easier reducibility of Pt/$CeO_2$.

Ni/ZnO-based Adsorbents Supported on Al2O3, SiO2, TiO2, ZrO2: A Comparison for Desulfurization of Model Gasoline by Reactive Adsorption

  • Meng, Xuan;Huang, Huan;Weng, Huixin;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3213-3217
    • /
    • 2012
  • Reactive adsorption desulfurization (RADS) experiments were conducted over a series of commercial metal oxide supports ($Al_2O_{3-}$, $SiO_{2-}$, $TiO_{2-}$ and $ZrO_{2-}$) supported Ni/ZnO adsorbents. The adsorbents were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and Fourier transform infrared spectroscopy (FTIR) in order to find out the influence of specific types of surface chemistry and structural characteristics on the sulfur adsorptive capacity. The desulfurization performance of all the studied adsorbents decreased in the following order: Ni/ZnO-$TiO_2$ > Ni/ZnO-$ZrO_2$ > Ni/ZnO-$SiO_2$ > Ni/ZnO-$Al_2O_3$. Ni/ZnO-$TiO_2$ shows the best performance and the three hour sulfur capacity can achieve 12.34 mg S/g adsorbent with a WHSV of $4h^{-1}$. Various characterization techniques suggest that weak interaction between active component and support component, high dispersion of NiO and ZnO, high reducibility and large total Lewis acidity of the adsorbents are important factors in achieving better RADS performance.