• Title/Summary/Keyword: $H_2$ uptake

Search Result 904, Processing Time 0.028 seconds

Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes (사람 암세포와 단핵세포에서 고포도당 농도에 의한 FDG 섭취 저하의 서로 다른 기전)

  • Kim, Chae-Kyun;Chung, June-Key;Lee, Yong-Jin;Hong, Mee-Kyoung;Jeong, Jae-Min;Lee, Dong-Soo;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.110-120
    • /
    • 2002
  • To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied $[^{18}F]$ fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5 - 10.8 mU/mg), while SNU-C5 and monocytes showed lower range of hexokinase activity (4.3 - 6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

Effects of Dexamethasone and DHEA on the Changes of Glutamate and Polyamine Uptake in Rat Astrocytes by Lipopolysaccharide and Antimycin A

  • Choi, Sang-Hyun;Lee, Bum;Shin, Kyung-Ho;Min, Bon-Hong;Chun, Yeon-Sook;Chun, Boe-Gwun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.137-146
    • /
    • 1999
  • Interactions among dexamethasone, dehydroepiandrosterone (DHEA), lipopolysaccharide (LPS), and antimycin A on the glutamate uptake and the polyamine uptake were investigated in primary cultures of rat cerebral cortical astrocytes to examine the effects of dexamethasone and DHEA on the regulatory role of astrocytes in conditions of increased extracellular concentrations of glutamate or polyamines. 1. $[^3H]Glutamate$ uptake: LPS and antimycin A decreased $V_{max},$ but both drugs had little effect on $K_m.$ Dexamethasone also decreased basal $V_{max}$ without any significant effect on $K_m.$ And dexamethasone further decreased the antimycin A-induced decrease of $V_{max}.$ DHEA did not affect the kinetics of basal glutamate uptake and the change by LPS or antimycin A. 2. $[^{14}C]Putrescine$ uptake: LPS increased $V_{max},$ and antimycin A decreased $V_{max}.$ They showed little effect on $K_m.$ Dexamethasone decreased $V_{max}$ of basal uptake and further decreased the antimycin A-induced decrease of $V_{max},$ and also decreased $V_{max}$ to less than control in LPS-treated astrocytes. DHEA did not affect $K_m$ and the change of $V_{max}$ by LPS or antimycin A. 3. $[^{14}C]Spermine$ uptake: Antimycin A decreased $V_{max},$ and LPS might increase $V_{max}.\;K_m$ was little affected by the drugs. Dexamethasone decreased basal $V_{max}$ and might further decrease the antimycin A-induced decrease of $V_{max}.$ And dexamethasone also decreased $V_{max}$ to less than control in LPS-treated astrocytes. DHEA might increase basal $V_{max}$ and $V_{max}$ of LPS-treated astrocytes. 4. $V_{max}$ of glutamate uptake by astrocytes was increased by putrescine (1000 ${\mu}M$ & 2000 ${\mu}M$) and spermidine (200 ${\mu}M,$ 500 ${\mu}M$ & 2000 ${\mu}M$). Spermine, 200 ${\mu}M$ (and 100 ${\mu}M$), also increased $V_{max},$ but a higher dose of 2000 ${\mu}M$ decreased $V_{max}.\;K_m$ of glutamate uptake was not significantly changed by these polyamines, except that higher doses of spermine showed tendency to decrease $K_m$ of glutamate uptake. In astrocytes, dexamethasone inhibited the glutamate uptake and the polyamine uptake in normal or hypoxic conditions, and the polyamine uptake might be stimulated by LPS and DHEA. Polyamines could aid astrocytes to uptake glutamate.

  • PDF

Biosorption of $Pb^{2+}$ and $Cr^{3+}$ by using Sargassum hornei (Sargassum horneri를 이용한 $Pb^{2+}$$Cr^{3+}$ 생체흡착)

  • 서근학;안갑환;조문철
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.387-391
    • /
    • 1999
  • $Pb^{2+}$ and $Cr^{3+}$ uptake capacity by Sargassum horneri was 185.5 mg $Pb^{2+}$/g biomass and 102.6 mg $Cr^{3+}$/g biomass, respectively. An adsorption equilibria were reached within about 0.5 hr for $Pb^{2+}$ and 1 hr for $Cr^{3+}$. The adsorption parameters for $Pb^{2+}$ and $Cr^{3+}$ were determined according to Langmuir and Freundlich model. With an increase in pH values of 2 to 5, $Pb^{2+}$ uptake was increased, however $Cr^{3+}$ uptake jwas constant. The selectivity of mixture solution showed the uptake order of $Pb^{2+}$>$Cu^{2+}$>$Cr^{3+}$>$Cd^{2+}$. $Pb^{2+}$ and $Cr^{3+}$ adsorbed by S. horneri could be recovered from 0.1M HCl, 0.1M ${HNO}_3$ and 0.1M EDTA by desorption process, and the efficiency of $Pb^{2+}$ desorption was above 98%, whereas the efficiency of $Cr^{3+}$ desorption was below 34%.

  • PDF

Changes of Soil Chemical Properties and Uptake of Salts by the Plants according to the Application of the Food Waste Compost (음식물찌꺼기 퇴비의 시용에 따른 토양의 화학성 변화 밑 작물체내 염류의 흡수)

  • Lee, Sang-Suk;Chang, Ki-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.59-67
    • /
    • 1998
  • This study was conducted to investigate the changes of soil chemical properties and uptake of salts by the plants(Raphanus and Lactuca) according to the application of the food waste compost(FWC), which was produced on a large scale at a pilot plant. Generally, FWC has a high electrical conductivity(EC) and contains much salts, such as Na, K, Ca, and Mg, and because of these when FWC are applied to soils there is a possibility of salt ac-cumulation in soils and growth inhibition on plants. The FWC were applied at the rates of 0, 20, 40, 80, and 160 Mg/ha in the 1/5,000a pots on the basis of dry weight, and the plants were cultivated for 60 days. And then, changes of pH and EC in soils and uptake of salts by the plants were investigated. The results obtained are summarized as follows; 1. After the cultivation of the Raphanus and Lactuca, pH increased and EC decreased in the soils. 2. Uptake rates of Na and K were slightly increased with the application of the FWC. In uptake rate of Ca, Raphanus and Lactuca was decreased, increased, respectively. In Raphanus, uptake rate of Mg was highest with the application of the FWC at 40 Mg/ha, and in Lactuca, continuously increased with application of the FWC.

  • PDF

N,N-Dimethyl-D-ribo-phytosphingosine Modulates Cellular Functions of 1321N1 Astrocytes

  • Lee, Yun-Kyung;Kim, Hyo-Lim;Kim, Kye-Ok;Sacket, Santosh J.;Han, Mi-Jin;Jo, Ji-Yeong;Lim, Sung-Mee;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.73-77
    • /
    • 2007
  • N,N-Dimethyl-D-ribo-phytosphingosine (DMPH) is an N-methyl derivative of sphingosine. In the present paper, we studied effects of DMPH on intracellular Ca$^{2+}$ concentration, pH, glutamate uptake, and cell viability in human 1321N1 astrocytes. DMPH increased intracellular Ca$^{2+}$ concentration and cytosolic pH significantly in a dose-dependent manner. DMPH also inhibited glutamate uptake by 1321N1 astrocytes. Finally, treatment of cells with DMPH for 24 h reduced viability of cells largely and concentration-dependently. In summary, DMPH increased intracellular Ca$^{2+}$ concentration and pH, inhibited glutamate uptake and evoked cytotoxicity in 1321N1 astrocytes. Our observations with DMPH in the 1321N1 astrocytes would enhance understanding of DMPH actions in the brain.

재조합 Escherichia coli를 이용한 수용액상에서의 Cadmium의 선택적 제거

  • Kim, Se-Gwon;Kim, Eun-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.183-186
    • /
    • 2000
  • Recombinant E. coli JM109(pZH3-5/pMT) harboring manganese transport gene(mntA) and metal sequestering protein, metallothionein(MT), was cultivated to accumulate cadmium in aqueous phase. Bioaccumulation followed Michaelis-Menten type kinetics. Equilibrium isotherm showed Langmuir type isotherm. IPTG induction cell showed fast $Cd^{2+}$ uptake and had higher uptake rate than wild type and no-induced cell. The optimum pH and temperature for $Cd^{2+}$ uptake was 7 and $37^{\circ}C$, respectively. Manganese (0.01M) inhibited the $Cd^{2+}$ accumulation. However, $Cu^{2+}$, $Zn^{2+}$ and $Pb^{2+}$ did not affect the $Cd^{2+}$ bioaccumulation.

  • PDF

Variations in Nutrients & $CO_2$ Uptake Rates of Porphyra yezoensis Ueda and a Simple Evaluation of in situ N & C Demand Rates at Aquaculture Farms in South Korea (방사무늬김(Porphyra yezoensis Ueda)의 영양염과 이산화탄소 흡수율 정밀 평가를 통한 양식해역의 질소와 탄소 요구량 산정)

  • Shim, JeongHee;Hwang, Jae Ran;Lee, Sang Yong;Kwon, Jung-No
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.297-305
    • /
    • 2014
  • In order to understand the contribution of seaweed aquaculture to nutrients and carbon cycles in coastal environments, we measured the nutrients & carbon uptake rates of Porphyra yezoensis Ueda sampled at Nakdong-River Estuary using a chamber incubation method from November 2011 to April 2012. It was observed that the production rate of dissolved oxygen by P. yezoensis (n=30~40) was about $68.8{\pm}46.0{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and uptake rate of nitrate, phosphate and dissolved inorganic carbon (DIC) was found to be $2.5{\pm}1.8{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, $0.18{\pm}0.11{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and $87.1{\pm}57.3{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, respectively. There was a positive linear correlation existed between the production rate of dissolved oxygen and the consumption rates of nitrate, phosphate and DIC, respectively, suggesting that these factors may serve as good indicators of P. yezoensis photosynthesis. Further, there was a negative logarithmic relationship between fresh weight of thallus and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (0.1~0.3 g) were much more efficient at nutrients and $CO_2$ uptake than old specimens. It means that the early culturing stage than harvesting season might have more possibilities to be developed chlorosis by high rates of nitrogen uptake. However, N & C demanding rates of Busan and Jeollabuk-do, calculated by monthly mass production and culturing area, were much higher than those of Jeollanam-do, the highest harvesting area in Korea. Chlorosis events at Jeollabuk-do recently might have developed by the reason that heavily culture in narrow area and insufficient nutrients in maximum yield season (Dec.~Jan.) due mostly to shortage of land discharge and weak water circulation. The annual DIC uptake by P. yezoensis in Nakdong-River Estuary was estimated about $5.6{\times}10^3\;CO_2$ ton, which was about 0.03% of annual carbon dioxide emission of Busan City. Taken together, we suggest more research would be helpful to gain deep insight to evaluate the roles of seaweed aquaculture to the coastal nutrients cycles and global carbon cycle.

Enhancement of phosphate removal using copper impregnated activated carbon(GAC-Cu) (Cu(II)를 이용하여 표면개질된 활성탄의 인산염 제거효율 향상)

  • Shin, Jeongwoo;Kang, Seoyeon;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.

The Uptake of Lead Ion with Staphylococcus epidermidis (Staphylococcus epidermidis 를 이용한 납 이온의 축적에 관한 연구)

  • 김종혜;김말남
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.310-315
    • /
    • 1992
  • Absorption of $\textrm{Pb}^{2-}$ from aqueous solution was studied using Staphylococcus epidermidis. Cells of exponential phase were employed as absorbents. Uptake ratio defined as the ratio of amount of $\textrm{Pb}^{2+}$ absorbed to that of initial $\textrm{Pb}^{2+}$. Absorption of $\textrm{Pb}^{2+}$ increased with increase in cell concentration. while amount of $\textrm{Pb}^{2+}$ per unit cell mass decreased. Uptake ratio of $\textrm{Pb}^{2+}$ augmented and then diminished after exhibiting a maximum as the pH of the solution increased. Equilibrium absorption of $\textrm{Pb}^{2+}$ deviated from Freundlich isotherm especially at higher concentration of $\textrm{Pb}^{2+}$ due to the precipitation phenomena. HCI and EDTA were founded to desorb $\textrm{Pb}^{2+}$ more effectively than $\textrm{Na}_{2}\textrm{CO}_{3}$ or $\textrm{NaHCO}_{3}$. After 10 cycles of absorption and desorption. $\textrm{Pb}^{2+}$ absorption capability remained almost unchanged and the biomass had leaked out 30-40 wt/%. Uptake ratio of Pb2+ decreased in the presence of other heavy metal ions due to the competitive absorption The inhibition of $\textrm{Pb}^{2+}$ absorption appeared to have a strong correlation with ionic radius of the competing ions. Especially $\textrm{Cr}^{3-}$, $\textrm{Co}^{2+}$ or $\textrm{Fe}^{2+}$ having smaller ionic radius depressed more significantly the uptake of $\textrm{Pb}^{2+}$ than any other metal ions tested.

  • PDF

Effects of Barley Straw Application on Soil Physico-Chemical Properties and Nutrient Uptake in Rice Paddy Field of Double Cropping (벼 2모작 논에서 보릿짚 시용이 토양이화학성 및 양분흡수에 미치는 영향)

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Kang, Seung-Weon;Han, Sang-Soo;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.110-116
    • /
    • 2001
  • This experiment was carried out to investigate the effects of amount of nitrogen application with the barley straw application on the changes in soil physical and chemical properties. nutrient uptake and percentage recovery of chemical fertilizer N in the rice plant from 1997 to 1998. The soil physical properties, such as bulk density, hardness, porosity and gaseous phase were improved by barley straw application. There was also improvement or increment in the soil chemical properties, such as pH, organic matter, T-C. T-N, available $SiO_2$, exchangeable K and cation exchange capacity, but decrease in available $P_2O_5$. The $Fe^{+{+}}$ content in soil after barley straw application was high from tillering stage to panicle forming stage, but becoming lowered toward the heading stage, while $Mn^{+{+}}$ content was increased. N uptake with barley straw application was increased in the N $126kg\;ha^{-1}$ plot, but decreased in the N $141kg\;ha^{-1}$ plot. The uptake of fertilized N was continued longer in barley straw application than none-application plot. Percentage recovery of chemical fertilizer N in rice straw was around 1% at tillering stage, but was highly increasing till maximum tillering stage, while the recovery was generally low in barley straw application. Meanwhile, fertilizer P uptake in barley straw application was high, but potassium uptake was low at all different levels of N application.

  • PDF