• Title/Summary/Keyword: $H_2$ plasma treatment

Search Result 493, Processing Time 0.033 seconds

Sterilization of Neurospora Crassa by Noncontacted Low Temperature Atmospheric Pressure Surface Discharged Plasma with Dielectric Barrier Structure (유전체장벽 방전구조의 비접촉식 저온 대기압 면방전 플라즈마를 이용한 빵곰팡이의 살균효과)

  • Ryu, Young Hyo;Uhm, Han Sup;Park, Gyung Soon;Choi, Eun Ha
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.55-65
    • /
    • 2013
  • Sterilization of Neurospora crassa has been investigated in this research by using a surface air plasma with dielectric barrier discharged (DBD) structure under atmospheric pressure. The sinusoidal alternating current has been used in this experiment with discharge voltage of 1.4~2.3 kV. The phase difference between the voltage and current signals are found to be almost 80 degree due to the capacitive property of dielectric barrier. Temperature on the biomaterials has been minimized by radiating the heat with the air cooling system. It is noted that the substrate temperature remains under 37 degree for plasma exposure time of 10 minutes with operation of cooler system. It is found that the ozone, $O_3$, has been measured to be about 25~30 ppm within 1 cm region and to be about 5 ppm at the 150 cm downstream region away from the suface plasma. It is also noted that the nitric oxide, NO, and nitric dioxide, $NO_2$, are not nearly detected. Germination rate and mitochodrial activity of Neurospora crassa immersed in the deionized water have been found to be drastically decreased as the plasma treatment time and its electrical power are increased in this experiment. Here, the mitochondrial activity has been analyzed by MTT (3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. However, sterilization of Neurospora crassa immersed in the Vogel's minimal media has been found to be low by plasma treatment, which is caused by surrounding background solution. This research shows the sterilization possibility of Neurospora crassa by using the noncontated surface DBD plasma, which is different from the plasma jet. This is mainly attibuted to the reactive species generated by the surface plasma, since they play a major role for inhibition of micobes such as Neurospora crassa.

Improvement of Hysteresis Characteristics of Low Temperature Poly-Si TFTs (저온 Poly-Si TFT 소자의 Hysteresis 특성 개선)

  • Chung, Hoon-Ju;Cho, Bong-Rae;Kim, Byeong-Koo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • Although Active matrix organic light emitting diode (AMOLED) display has a better image quality in terms of viewing angle, contrast ratio, and response time than liquid crystal displays (LCDs), it still has some critical issues such as lifetime, residual images, and brightness non-uniformity due to non-uniformity in electrical characteristics of driving TFTs and IR drops on supplied power line. Among them, we improved irrecoverable residual images of AMOLED displays which is mainly related to the hysteresis characteristics of driving TFTs. We consider four kinds of surface treatment conditions before gate oxide deposition for improving hysteresis characteristics. We can reduce the hysteresis level of p-channel TFT to 0.23 V, interface trap states between the poly-Si layer and gate insulator to $3.11{\times}10^{11}cm^{-2}$, and output current variation of p-channel TFT to 3.65 % through the surface treatment using ultraviolet light and H2 plasma. Therefore, the recoverable residual image problem of AMOLED displays can be improved by surface treatment using ultraviolet light and $H_2$ plasma.

  • PDF

A study on nano-scale friction of hydrogenated amorphous carbon for application in MEMS (MEMS 적용을 위한 비정질 상 탄소박막의 나노 스케일 마찰력 특성연구)

  • 고명균;박종완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1211-1214
    • /
    • 2003
  • The film is prepared by electron cyclotron resonance chemical vapor deposition (ECRCVD) employing CH$_4$ and H$_2$ gases. It is deposited by the control of microwave plasma power, gas flow ratio, deposition pressure, and In-situ thermal treatment temperature. The structure of a-C:H (hydrogenated amorphous carbon) thin film is analysed by FT-IR spectroscopy. The fraction sp$^3$ versus sp$^2$ bonding is very important to clear up the surface and interrace of a-C:H film properties such as nano-scale friction behavior. The sp$^3$ versus sp$^2$ bonding of a-C:H thin film is dependent on the deposition conditions, therefore. nano-scale friction behavior is dependent on the deposition conditions.

  • PDF

Comparative Studies of Different Thermal Consolidation Techniques on Thermoelectric Properties of BiTeSe Alloy (BiTeSe 합금의 열적성형방법에 따른 열전특성)

  • Sharief, P.;Dharmaiah, P.;Lee, C.H.;Ahn, S.S.;Lee, S.H;Son, H.T;Hong, S.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.126-134
    • /
    • 2018
  • In this research, we produced polycrystalline n-type $Bi_2Te_{2.7}Se_{0.3}$ powder using water atomization. To obtain full benefit through water atomized powder, we have implemented spark plasma sintering and hot extrusion for powder compaction. The microstructure and thermoelectric properties were investigated and compared. The average grain size of SPS and extruded bulks were 3.08 and $3.86{\mu}m$ respectively. The extruded material microstructure contains layered grains with less grain boundaries and its counter-part SPS displays dense packed grains with high grain boundaries. Among both bulks, extrusion sample exhibited high power factor (PF) of $2.96{\times}10^{-3}Wm^{-1}K^{-2}$ which is 38% higher than SPS ($2.14{\times}10^{-3}$) bulk sample. Due to variations in grain size and grain boundaries, the SPS bulk shows low thermal conductivity than extruded bulk. However, the extruded bulk sample exhibited a peak ZT of 0.69 at 400 K, which is 19% higher than SPS bulk sample, due to its higher power factor.

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Effect of Atmospheric Pressure Plasma on the Quality of Commercially Available Sunsik (대기압 플라즈마가 선식의 품질 특성에 미치는 영향)

  • Kim, Hyun-Joo;Woo, Koan Sik;Jo, Cheorun;Lee, Seuk Ki;Park, Hye Young;Sim, Eun-Yeong;Won, Yong-Jae;Lee, Sang-Bok;Oh, Sea-Kwan
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.5
    • /
    • pp.375-379
    • /
    • 2016
  • Atmospheric pressure plasma (APP) was applied to examine microbial safety and qualities of commercial Sunsik. APP was generated in a square-shaped plastic container (250 W, 15 kHz, ambient air) and dielectric barrier discharge plasma treatment was applied for periods of 0, 5, 10, and 20 minutes. The total aerobic bacterial count in the control was 4.44 log CFU/g. Under plasma treatment for 20 minutes, Sunsik samples inoculated with Bacillus cereus, B. subtilis, and Escherichia coli O157:H7 resulted in a reduction of bacterial counts by approximately 2.20, 2.22, and 2.52 log CFU/g, respectively. The pH of the sample was found to decrease after APP treatment. Although hunter color $L^*$ of Sunsik increased, $a^*$ and $b^*$ value decreased as a result of APP. Increasing the APP time also enhanced the peroxide value. Further, sensory evaluation revealed that APP decreased color, flavor, taste and overall acceptability. The results of this study indicated that APP treatment improved the microbial quality of Sunsik, although further studies should be conducted to reduce the deterioration of sensory quality induced by APP.

Bioinspired superhydrophobic steel surfaces

  • Heo, Eun-Gyu;O, Gyu-Hwan;Lee, Gwang-Ryeol;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.509-509
    • /
    • 2011
  • Superhydrophobic surfaces on alloyed steels were fabricated with a non-conventional method of plasma etching and subsequent water immersion procedure. High aspect ratio nanopatterns of nanoflake or nano-needle were created on the steels with various Cr content in its composition. With CF4 plasma treatment in radio-frequence chemical vapor deposition (r.-f. CVD) method, steel surfaces were etched and fluorinated by CF4 plasma, which induced the nanopattern evolution through the water immersion process. It was found that fluorine ion played a role as a catalyst to form nanopatterns in water elucidated with XPS and TEM analysis. The hierarchical patterns in micro- and nano scale leads to superhydrophobic properties on the surfaces by deposition of a hydrophobic coating with a-C:H:Si:O film deposited with a gas precursor of hexamethlydisiloxane (HMDSO) with its lower surface energy of 24.2 mN/m, similar to that of curticular wax covering lotus surfaces. Since this method is based on plasma dry etching & coating, precise patterning of surface texturing would be potential on steel or metal surfaces. Patterned hydrophobic steel surfaces were demonstrated by mimicking the Robinia pseudoacacia or acacia leaf, on which water was collected from the humid air using a patterned hydrophobicity on the steels. It is expected that this facile, non-toxic and fast technique would accelerate the large-scale production of superhydrophobic engineering materials with industrial applications.

  • PDF

A Study on the Regeneration Effects of Commercial $V_2O_5-WO_3/TiO_2$ SCR Catalyst for the Reduction of NOx (질소산화물 제거용 상용 $V_2O_5-WO_3/TiO_2$ SCR 폐 촉매의 재생 효과 고찰)

  • Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.859-869
    • /
    • 2005
  • The commercial $V_2O_5-WO_3/TiO_2$ catalysts which had been exposed to the off gas from incinerator for a long time were regenerated by physical and chemical treatment. The catalytic properties and NOx conversion reactivity of those catalysts were examined by analysis equipment and NOx conversion experiment. The characterization of the catalysts were performed by XRD(x-ray diffractometer), BET, POROSIMETER, EDX(energy dispersive x-ray spectrometer), ICP(inductively coupled plasma), TGA(thermogravimetric analyzer) and SEM (scanning electron microscopy). NOx conversion experiment were performed with simulated off gas of the incinerator and $NH_3$ was used as a reductant of SCR reaction. Among the regeneration treatment methods which were applied to regenerate the aged catalysts in this study, it showed that the heat treatment method had excellent regeneration effect on the catalytic performance for NOx conversion. The catalytic performance of the regenerated catalysts with heat treatment method were recovered over than 95% of that of fresh catalyst. For the regenerated catalysts with the acid solution(pH 5) and the alkali solution(pH 12), the catalytic performance were recovered over than 90% of that of fresh catalyst. From the characterization results of the regenerated catalysts, the specific surface area was recovered in the range of $85{\sim}95%$ of that of fresh catalyst. S and Ca element, which are well known as the deactivation materials for the SCR catalysts, accumulated on the aged catalyst surface were removed up to maximum 99%. Among the P, Cr, Zn and Pb elements accumulated on the aged catalyst surface, P, Cr and Zn element were removed up to 95%. But the Pb element were removed in the range of $10{\sim}30%$ of that of fresh catalyst.

Salivary Secretion Volume Related Ruminal Distension and Suppression of Dry Forage Intake in Large-type Goats

  • Thang, Tran Van;Sunagawa, Katsunori;Nagamine, Itsuki;Ogura, Go
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1100-1111
    • /
    • 2011
  • Two experiments under sham feeding conditions were conducted to determine whether or not ruminal distension brought about by feed boluses entering the rumen is a factor in the marked suppression of feed intake after 40 min of feeding. In experiment 1, a comparison was made between the intraruminal insertion of a water filled balloon (RIB) treatment and normal control (non-insertion of a balloon, NIB). In experiment 2, saliva lost due to sham feeding conditions was replenished via an intraruminal infusion of iso-osmotic artificial saliva. A comparison of dry forage intake was then conducted between the intraruminal replenishment of iso-osmotic artificial saliva and insertion of a balloon (RRIAS-RIB) treatment, and the intraruminal replenishment of iso-osmotic artificial saliva and non-insertion of a balloon (RRIAS-NIB) control. In experiment 1, eating rates in the RIB treatment 30 min after the commencement of feeding tended to be lower than those in the NIB control. In comparison with the NIB control, cumulative dry forage intake in the RIB treatment was 29.7% less (p<0.05) upon conclusion of the 2 h feeding period. The secreted saliva weight in the NIB control and the RIB treatment during the 2 h feeding period was 53.2% and 60.9% total weight of the boluses, respectively. In experiment 2, eating rates in the RRIAS-RIB treatment 30 min after the commencement of feeding was significantly lower (p<0.05) than those in the RRIAS-NIB control. Cumulative dry forage intake in the RRIAS-RIB treatment was a significant 45.5% less (p<0.05) compared with that in the RRIAS-NIB control upon conclusion of the 2 h feeding period. The secreted saliva weight in the RRIAS-NIB control and the RRIAS-RIB treatment during the 2 h feeding period was 54.1% and 64.2% total weight of the boluses, respectively. The level of decrease in dry forage intake in the RRIAS-RIB treatment of experiment 2 was larger than that in the RIB treatment of experiment 1. In the present experiments, due to the sham feeding conditions, the increases in osmolality of ruminal fluid and plasma, and a decrease in ruminal fluid pH which are normally associated with feeding were not observed. The results indicate that the marked decrease in feed intake observed in the second hour of the 2 h feeding period is related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding.

Effects of Plasma-Nitriding on the Pitting Corrosion of Fe-30at%Al-5at%Cr Alloy (Fe-30at.%Al-5at.%Cr계 합금의 공식특성에 미치는 플라즈마질화의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.480-490
    • /
    • 2003
  • Effects of plasma-nitriding on the pitting corrosion of Fe-30at%Al-5at%Cr alloy containing Ti, Hf, and Zr were investigated using potentiostat in 0.1M HCl. The specimen was casted by the vacuum arc melting. The subsequent homogenization was carried out in Ar gas atmosphere at $1000^{\circ}C$ for 7days and phase stabilizing heat treatment was carried out in Ar gas atmosphere at $500^{\circ}C$ for 5 days. The specimen was nitrided in the $N_2$, and $H_2$, (1:1) mixed gas of $10^{-4}$ torr at $480^{\circ}C$ for 10 hrs. After the corrosion tests, the surface of the tested specimens were observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-30at%Al-5Cr alloy, the addition of Hf has equi-axied structure and addition of Zr showed dendritic structure. For Fe-30at%Al-5Cr alloy containing Ti, plasma nitriding proved beneficial to decrease the pitting corrosion attack by increasing pitting potential due to formation of TiN film. Addition of Hf and Zr resulted in a higher activation current density and also a lower pitting potential. These results indicated the role of dendritic structure in decreasing the pitting corrosion resistance of Fe-30Al-5Cr alloy. Ti addition to Fe-30Al-5Cr decreased the number and size of pits. In the case of Zr and Hf addition, the pits nucleated remarkably at dendritic branches.