• Title/Summary/Keyword: $H_2$ gas

Search Result 4,873, Processing Time 0.04 seconds

Evaluation of Odors and Odorous Compounds from Liquid Animal Manure Treated with Different Methods and Their Application to Soils (액상 가축분뇨의 처리 및 토양환원에 따른 악취 및 악취물질의 평가)

  • 고한종;최홍림;김기연;이용기;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.453-466
    • /
    • 2006
  • To comply with stricter regulations provoked by increasing odor nuisance, it is imperative to practice effective odor control for sustainable livestock production. This study was conducted to assess odor and odorous compounds emitted from liquid animal manure with different treatment methods such as Fresh Manure(without treatment, FM), Anaerobic Digestion(AD) and Thermophilic Aerobic Digestion(TAD) and their application to soil. Air samples were collected at the headspace of liquid manure, upland and paddy soil, and analyzed for odor intensity and offensiveness using an olfactometry; odor concentration index using odor analyser; nitrogen-containing compound such as ammonia(NH3) using fluorescence method; and sulfur containing compounds such as hydrogen sulfide(H2S), methyl mercaptan(MeSH), dimethyl sulfide(DMS) and dimethyl disulfide(DMDS) using gas chromatography-pulsed flame photometric detector, respectively. Odor intensity, offensiveness and concentration index from TAD liquid manure was statistically lower than those from FM and AD(p<0.01). Mean concentrations of H2S, MeSH, DMS, DMDS and NH3 were 65.93ppb, 18.55ppb, 5.26ppb, 0.33ppb and 10.57ppm for liquid manure with AD; and 5.15ppb, 0.97ppb, 0.80ppb, 0.56ppb and 1.34ppm for liquid manure with TAD, respectively. More than 60% of malodorous compounds related to nitrogen and sulfur were removed by heterotrophic microorganisms during TAD treatment. When liquid manure was applied onto upland and paddy soil, NH3 removal efficiencies ranged from 51 to 94% and 22 to 91% for AD and TAD liquid manure, respectively. The above results show that liquid manure with TAD is superior to AD and FM with respect to the odor reduction and odor problem caused by land applied liquid manure is directly related to the degree of odor generated by the manure treatment method.

A Comparison Study between Batch and Continuous Process Simulation for the Separation of Carbon-13 Isotope by Cryogenic Distillation (Methane으로부터 13C 동위원소 분리를 위한 회분식 및 연속식 극저온 증류공정모사 비교 연구)

  • Kim, Jong Hwan;Lee, Doug Hyung;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.57-66
    • /
    • 2007
  • Natural gases generally consist of mainly $^{12}C$ and about 1.1% of $^{13}C$. It is well known that a stable carbon isotope, $^{13}C$, has been widely used for the applications of medical, pharmaceutical, and agricultural tracers. As a result, the development of the separation and concentrating technology of $^{13}C$ can cause of high value-added products and the possibility of the generation of new carbon materials, In general, there are two kinds of approaches to obtain a stable $^{13}C$ isotope by the separation of cryogenic distillation. One is to obtain a concentrated $^{13}CH_4$ isotope from natural gas. Another approach is to get concentrated $^{13}CO$ by distillation followed by a chemical reaction of $CH_4$ and $H_2O$. In this study, rigorous process simulations of the cryogenic distillation have been performed and analyzed for the concentrated separation of $^{13}C$ isotopes from LNG and NG by using commercial process simulator. Due to the very small differences of relative volatilities and separabilities of $^{12}C$ and $^{13}C$, the process design and operation of effective separation and concentration of $^{13}C$ need special strategies and feasibility studies. Utilization of vapor pressure data to acentric factor in SRK equation of state and optimized process conditions have been able to predict for the effective of the separation yield and concentration of $^{13}C$ for the cryogenic distillation. The various operation strategies for both batch and continuous cryogenic distillation are also studied and suggested for the basic design of the process. Development of this study can provide a tool for the effective design and operation of the cryogenic separation of $^{13}C$.

Photocatalytic Oxidation of Arsenite Using Goethite and UVC-Lamp (침철석과 UVC-Lamp를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Cho, Hyen-Goo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.215-224
    • /
    • 2017
  • Arsenic (As) is known to be the most toxic element and frequently detected in groundwater environment. Inorganic As exists as arsenite [As(III)] and arsenate [As(V)] in reduced and oxidized environments, respectively. It has been reported that the toxicity of arsenite is much higher than that of arsenate and furthermore arsenite shows relatively higher mobility in aqueous environments. For this reason, there have been numerous researches on the process for oxidation of arsenite to arsenate to reduce the toxicity of arsenic. In particular, photooxidation has been considered to be simple, economical, and efficient to attain such goal. This study was conducted to evaluate the applicability of naturally-occurring goethite as a photocatalyst to substitute for $TiO_2$ which has been mostly used in the photooxidation processes so far. In addition, the effects of several factors on the overall performance of arsenite photocatalytic oxidation process were evaluated. The results show that the efficiency of the process was affected by total concentration of dissolved cations rather than by the kind of those cations and also the relatively higher pH conditions seemed to be more favorable to the process. In the case of coexistence of arsenite and arsenate, the removal tendency by adsorption onto goethite appeared to be different between arsenite and arsenate due to their different affinities with goethite, but any effect on the photocatalytic oxidation of arsenite was not observed. In terms of effect of humic acid on the process, it is likely that the higher concentration of humic acid reduced the overall performance of the arsenite photocatalytic oxidation as a result of competing interaction of activated oxygen species, such as hydroxyl and superoxide radicals, with arsenite and humic acid. In addition, it is revealed that the injection of oxygen gas improved the process because oxygen contributes to arsenite oxidation as an electron acceptor. Based on the results of the study, consequently, the photocatalytic oxidation of aqueous arsenite using goethite seems to be greatly feasible with the optimization of process.

Effect of Reaction Factors on the Properties of Complex Oxide Powder Produced by Spray Roasting Process (분무배소법에 의해 생성되는 복합산화물 분말들의 특성에 미치는 반응인자들의 영향)

  • 유재근;이성수;박희범;안주삼;남용현;손진군
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.16-27
    • /
    • 2000
  • In order to produce raw material powder of advanced magnetic material by spray roasting process, newly modified spray roasting system was developed in this work. In this spray roasting system, raw material solution was effectively atomized and sprayed into the reaction furnace. Also, uniform temperature distribution inside reaction furnace made thermal decomposition process fully completed, and produced powder was effectively collected in cyclone and bag filter. This system equipped with apparatus which can purify hazard produced gas. In this study complex acid solution was prepared by dissolution of mill scale and ferro-Mn into the acid solution, and the pH of this complex acid solution was controlled about to 4. It was conformed that mill scale and ferro-Mn containing a lot of impurities such as $SiO_2$, P and Al could be used as raw material by reducing the impurities content of complex acid solution below 20 ppm. Complex oxide powder of Fe-Mn system was produced by spraying purified complex acid solution into the spray roaster through nozzle, and the variations of produced powder characters were studied by changing he reaction conditions such as reaction temperature, the injection velocity of solution and air, nozzle tip size and concentration of solution. The morphology of produced powder had spherical shape under the most experimental conditions, and concentration of solution. The morphology of produced powder has spherical shape under the most experimental conditions, and the composition and the particle size distribution were almost uniform, which tells the excellence of this spray roasting system. The grain size of most produced powder was below 100 nm. From the above results, it will be possible to produce ultra fine oxide powder from the chloride of Fe, Mn, Ni, Cu and rare earth by using this spray roasting system, and also to produce ultra fine pure metal powder by changing reaction atmosphere.

  • PDF

Physiological and Growth Responses of M. thunbergii to Different Levels of Fertilization (시비처리에 따른 후박나무의 생리 및 생장 반응)

  • Jung-Won Sung;Yeong Geun Song;Haeun Koo;Hyeon Hwa Kim;Se Min Byun;Chae Rim Lee;Seok-Gon Park;Kyeong Cheol Lee
    • Korean Journal of Plant Resources
    • /
    • v.36 no.2
    • /
    • pp.172-180
    • /
    • 2023
  • In the current study, four groups; control, 500, 1000, and 2000 mg/L, were treated to investigate the effects of physiological and growth characteristics on Machilus thunbergii under various fertilization levels. As a result of the physiological response to the fertilization treatment, the fertilized group demonstrated relatively higher levels of A, ITE, WUEi, Vcamx, PIabs, and SFIabs in comparison to the control. The best photosynthetic mechanism was most clearly seen at 1000 mg/L, which involved gas exchange through active stomatal opening and closing. For a productive photosynthetic mechanism. As seen in the growth response of M. thunbergii to fertilization treatment, the fertilized group has significantly higher height, DRC, leaf dry weight, stem dry weight, total dry weight, LWR, and SWR than the control group. A healthy seedling quality index was particularly evident at 1000 mg/L, and other growth indicators were also at a decent level. 500 mg /L also demonstrated growth characteristics that were comparable to those at 1000 mg/L. As a result, M. thunbergii featured the best physiological and growth characteristics in response to the fertilization treatment at 1000 mg/L, and 500 mg/L also showed a similar trend, which is considered to be a good option from an economical perspective.

Germination-Induced Changes in Flavoring Compound Profiles and Phytonutrient Contents in Scented Rice (향미벼의 발아 전 후 향기 성분 및 기능성 지질성분 함량의 변화)

  • Mahmud, MM Chayan;Das, Animesh Chandra;Lee, Seul-Ki;Kim, Tae-Hyeong;Oh, Yejin;Cho, Yoo-Hyun;Lee, Young-Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.242-250
    • /
    • 2016
  • Although rice has been cultivated as a major food crop for approximately 5,000 years, the interest of customers in 'scented rice' is a recent trend in the Korean market. As a part of developing a germinated scented rice variety, the newly bred scented rice variety 'Cheonjihyang-1 se' was germinated for 24 h, and changes in profiles of flavor-related volatiles, lipophilic phytonutrients, and fatty acids were investigated. The profiling of volatile compounds by using a headspace-gas chromatography-mass spectrometry (HS-GC-MS) revealed a total of 56 odor-active flavoring compounds; 52 at the pre-germination stage, 51 at the post-germination stage, and 47 common at both stages. The major flavoring compounds were nonanol and benzene, which constituted 11.5% and 6.6%, respectively, of the total peak area in pre-germinated rice, and 19.4% and 6.5%, respectively, in post-germinated rice. Germination induced an increase in 13 flavoring compounds, including 3,3,5-trimethylheptane and 1-pentadecene, which increased by 763 and 513%, respectively by germination. However, we observed a germination-induced decrease in most of the other flavoring compounds. Especially, the most important scented rice-specific popcorn-flavoring compound, 2-acetyl-1-pyrroline, showed 89% decrease due to germination. Furthermore, the germination of scented rice induced a decrease in the content of various phytonutrients. For example, the total contents of phytosterols, squalene, and tocols decreased from 207.97, 31.74, and $25.32{\mu}g\;g^{-1}$ at pre-germination stage down to 136.66, 25.12, and $17.76{\mu}g\;g^{-1}$, respectively at post-germination stage. The fatty acid compositions were also affected by germination. The composition of three major fatty acids, linoleic, oleic, and palmitic acids, increased from 36.6, 34.2, and 24.4%, respectively, at the pre-germination stage to 37.9, 36.9, and 20.7%, respectively, at the post-germination stage. All these results suggested significant changes in the flavor-related compounds and phytonutrients of the scented rice variety 'Cheonjihyang-1 se' during the process of germination, and subsequently the need for developing a more precise process of germination to enhance the flavor and nutritional quality of the germinated scented rice products.

The Flow-rate Measurements in a Multi-phase Flow Pipeline by Using a Clamp-on Sealed Radioisotope Cross Correlation Flowmeter (투과 감마선 계측신호의 Cross correlation 기법 적용에 의한 다중상 유체의 유량측정)

  • Kim, Jin-Seop;Kim, Jong-Bum;Kim, Jae-Ho;Lee, Na-Young;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • The flow rate measurements in a multi-phase flow pipeline were evaluated quantitatively by means of a clamp-on sealed radioisotope based on a cross correlation signal processing technique. The flow rates were calculated by a determination of the transit time between two sealed gamma sources by using a cross correlation function following FFT filtering, then corrected with vapor fraction in the pipeline which was measured by the ${\gamma}$-ray attenuation method. The pipeline model was manufactured by acrylic resin(ID. 8 cm, L=3.5 m, t=10 mm), and the multi-phase flow patterns were realized by an injection of compressed $N_2$ gas. Two sealed gamma sources of $^{137}Cs$ (E=0.662 MeV, ${\Gamma}$ $factor=0.326\;R{\cdot}h^{-1}{\cdot}m^2{\cdot}Ci^{-1}$) of 20 mCi and 17 mCi, and radiation detectors of $2"{\times}2"$ NaI(Tl) scintillation counter (Eberline, SP-3) were used for this study. Under the given conditions(the distance between two sources: 4D(D; inner diameter), N/S ratio: $0.12{\sim}0.15$, sampling time ${\Delta}t$: 4msec), the measured flow rates showed the maximum. relative error of 1.7 % when compared to the real ones through the vapor content corrections($6.1\;%{\sim}9.2\;%$). From a subsequent experiment, it was proven that the closer the distance between the two sealed sources is, the more precise the measured flow rates are. Provided additional studies related to the selection of radioisotopes their activity, and an optimization of the experimental geometry are carried out, it is anticipated that a radioisotope application for flow rate measurements can be used as an important tool for monitoring multi-phase facilities belonging to petrochemical and refinery industries and contributes economically in the light of maintenance and control of them.

Comparison of Ventilation Efficiency in an Enclosed and Conventional Growing-Finishing Pig House (개방형과 무창형 육성비육돈사의 환기효율 비교)

  • Song, J.I.;Choi, D.Y.;Jung, J.W.;Yang, C.B.;Choi, H.L.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.459-468
    • /
    • 2004
  • An experiment was conducted to establish comparison of ventulation efficiency in an enclosed and conventional growing-finishing pig house. The main results of the experiment are as follows : In the established temperature was sustained at the level of summer 24.8${\sim}$29.1$^{\circ}C$, winter 17.9${\sim}$23.1$^{\circ}C$ during the experimental period of enclosed growing-finishing pig house, and conventional growing-finishing pig house was at the lovel of summer 24.7${\sim}$32.3$^{\circ}C$, winter 14.5${\sim}$18.2$^{\circ}C$ during the experimental period respectively. As for the results of dertimental gas(ammonia) concentration ratio analysis, while the conventional pig house sustained of summer 9.3${\sim}$16.9 mg/$\ell$ level, enclosed growing-finishing pig house sustained of summer 7.9${\sim}$16.1 mg/$\ell$, and the latter one is lower than that of the conventional growing-finishing pig house. Air flow rate on the floor level which is the low part of pen and the active area of pigs in the enclosed growing and finishing pig house during winter was measured at 0 to 0.87 m/s at the 0.01 to 2.73 m/s at the maximum ventilation efficiency. As for breeding pigs in summer, the pigs from the conventional pig house weighed 100.2kg, on the other hand, the pigs from enclosed growing-finishing pig house weighed 107.3 kg ; the differnce between the two kinds was about 7 kg. This was because the most adequate environment, which was not influenced by the exterior atmosphere, was offered to the pigs from enclosed growing-finishing pig house, and all of this could reduce pigs stress effectively.

Changes of characteristics of livestock feces compost pile during composting period and land application effect of compost (축분 퇴비화과정 중 특성변화와 축분퇴비 이용효과)

  • Jeong, Kwang-Hwa;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.56-64
    • /
    • 2001
  • Composting of livestock feces is economic and safe process to decrease the possibility of direct leakage of organic pollutants to ecosystem from commercial and environmental point of view. This study was conducted with three different experiments related to composting of livestock feces. The purpose of experiment 1 was to investigate changes of characteristic of compost pile during composting period by low temperature in cold season. To compare composting effect of experimental compost pile and control pile exposed in cold air, experimental compost piles were warmed up by hot air until their temperatures were reached at $35^{\circ}C$. Sawdust, Ricehull and Ricestraw were mixed with livestock feces as bulking agent. The highest temperatures of compost pile during composting period were in sawdust, rice hull, rice straw, and control were $75^{\circ}C$, $76^{\circ}C$, $68^{\circ}C$, $45^{\circ}C$ respectively. Moisture content, pH, C/N and volume of compost were decreased during composting period. Experiment 2 was carried out to study utilization effect of compost by plant. A corn was cultivated for 3 years on fertilized land with compost and chemical fertilizer. The amount of harvest and nutrition value of corn were analyzed. In first year of trial, the amount of harvest of corn on land treated with compost was lower by 20% than that of land treated with chemical fertilizer. In second year, there was no difference in yield of com between compost and chemical fertilizer. In third year, the yield of com on land fertilized with compost was much more than that of land fertilized with chemical fertilizer. The purpose of experiment 3 was to estimate the decrease of malodorous gas originating from livestock feces by bio-filter. Four types of bio-filters filled with saw dust, night soil, fermented compost and leaf mold were manufactured and tested. Each bio-filter achieved 87-95% $NH_3$ removal efficiency. This performance was maintained for 10 days. The highest $NH_3$ removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of $NH_3$ by about 95%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The concentration of hydrogen sulfide and methyl mercaptan originating for compost were equal to or less than $3mg/{\ell}$ and $2mg/{\ell}$, respectively. After passing throughout the bio-filter, hydrogen sulfide and methyl mercaptan were not detected.

  • PDF

Possibility of N-Nitrosamine Formation during Fermentation of Kimchi (김치 숙성중(熟成中) N-Nitrosamine의 생성요인(生成要因)에 관한 연구(硏究))

  • Kim, Soo-Hyun;Lee, Eung-Ho;Kawabata, Toshiharu;Ishibashi, Tohru;Endo, Tsugao;Matsui, Masami
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.3
    • /
    • pp.291-306
    • /
    • 1984
  • The possibility of formation of carcinogenic N-nitrosamines such as nitrosodimethylamine(NDMA), nitrosodiethylamine (NDEA) and nitrosopyrolidine (NPYR) during the fermentation of Kimchi was investigated. Three different types of Kimchi, formulated with chinese cabbage, red pepper powder and garlic, with or without one of both fermented shrimp and anchovy juice, were cured for 75 days at $5^{\circ}C$. The changes in contents of nitrates, nitrites, pH, ascorbic acid, secondary amines, trimethyl-aminoxide (TMAO), trimethylamine (TMA) and NDMA were analyzed periodically during the fermentation. TMAO, TMA. DMA, nitrate, nitrite and ascorbic acid were analyzed by colorimetric methods, and NDMA, NPYR and NDEA were determined by the method of GLC-TEA. Although the total secondary amines markedly increased, no significant changes in the levels of TMAO and TMA were observed during the fermentation Kimchi added with fermented shrimp or anchovy juice. The predominating component of secondary amines was confirmed to be dimethylamine by means of nitrosating technique coupled with gas chromatography. No appreciable increase in the level of nitrites was appeared although nitrate level in the Kimchi apparently decreased. Non detectable or trace level of nitrosamine formation was detected whereas the nitrates fairly decreased during the fermentation of Kimchi. This could be explained by the fact that the lack of nitrites was resulted in the system due to rapid consumption of nitrites formed from nitrates by the reactions with ascorbic acid and amino acids which have been known as inhibitors of nitrosation reaction.

  • PDF