DOI QR코드

DOI QR Code

Physiological and Growth Responses of M. thunbergii to Different Levels of Fertilization

시비처리에 따른 후박나무의 생리 및 생장 반응

  • Jung-Won Sung (Department of Landscape Architecture, Korea National University of Agriculture and Fisheries) ;
  • Yeong Geun Song (Department of Forest Environment Science, Jeonbuk National University) ;
  • Haeun Koo (Department of Crops and Forestry, Korea National University of Agriculture and Fisheries) ;
  • Hyeon Hwa Kim (Department of Crops and Forestry, Korea National University of Agriculture and Fisheries) ;
  • Se Min Byun (Department of Crops and Forestry, Korea National University of Agriculture and Fisheries) ;
  • Chae Rim Lee (Department of Crops and Forestry, Korea National University of Agriculture and Fisheries) ;
  • Seok-Gon Park (Department of Landscape Architecture, Sunchon National University) ;
  • Kyeong Cheol Lee (Department of Forestry, Korea National University of Agriculture and Fisheries)
  • 성정원 (한국농수산대학교 조경학과) ;
  • 송영근 (전북대학교 임학과) ;
  • 구하은 (한국농수산대학교 작물산림학부) ;
  • 김현화 (한국농수산대학교 작물산림학부) ;
  • 변세민 (한국농수산대학교 작물산림학부) ;
  • 이채림 (한국농수산대학교 작물산림학부) ;
  • 박석곤 (순천대학교 조경학과) ;
  • 이경철 (한국농수산대학교 산림학과)
  • Received : 2023.01.02
  • Accepted : 2023.03.13
  • Published : 2023.04.01

Abstract

In the current study, four groups; control, 500, 1000, and 2000 mg/L, were treated to investigate the effects of physiological and growth characteristics on Machilus thunbergii under various fertilization levels. As a result of the physiological response to the fertilization treatment, the fertilized group demonstrated relatively higher levels of A, ITE, WUEi, Vcamx, PIabs, and SFIabs in comparison to the control. The best photosynthetic mechanism was most clearly seen at 1000 mg/L, which involved gas exchange through active stomatal opening and closing. For a productive photosynthetic mechanism. As seen in the growth response of M. thunbergii to fertilization treatment, the fertilized group has significantly higher height, DRC, leaf dry weight, stem dry weight, total dry weight, LWR, and SWR than the control group. A healthy seedling quality index was particularly evident at 1000 mg/L, and other growth indicators were also at a decent level. 500 mg /L also demonstrated growth characteristics that were comparable to those at 1000 mg/L. As a result, M. thunbergii featured the best physiological and growth characteristics in response to the fertilization treatment at 1000 mg/L, and 500 mg/L also showed a similar trend, which is considered to be a good option from an economical perspective.

후박나무 묘목의 효율적인 생산을 위해 시비농도에 따른 간장, 근원경, 묘목품질지수, 광합성 반응 측정으로 생장과 생리적 특성을 조사하고 적정 용기묘 생산에 적합한 시비량을 확인하였다. 광합성 특성은 대조구에 비해 시비처리구에서 순광합성속도(A), 순간증산효율(ITE), 내재적 수분이용효율(WUEi), 최대카르복실화속도(Vcmax) 등 높았다. 특히, 시비 농도는 활발한 가스교환을 통해 비교적 높은 A, Vcmax 보였던1000 mg/L과 기공개폐 기작의 조절로 광합성 반응기작을 향상시킨500 mg/L가 적정 수준의 시비로 실험 결과를 보였다. 생장량 또한 대조구보다 시비처리구에서 묘목의 품질지수 등 통계적으로 높은 것으로 나타났다. 특히, 1000 mg/L은 근원경, 간장이 처리구 중 가장 큰 특징을 보였으며, 잎, 줄기, 전체 건중량, 역시 다른 처리구들에 비해 통계적으로 높았고, 묘목의 품질을 나타내는 H/D율 및 T/R율도 건전한 수준인 것을 볼 수 있었다. 500 mg/L 역시 양호한 생육 특성을 보여 경제성을 고려한다면 한 가지 선택지가 될 수 있다고 여겨진다. 그러나 2000 mg/L의 경우, 근원경의 감소로 H/D율은 높아졌고, 지상부에 비해 지하부로의 물질분배가 저조하여 T/R율 역시 증가하는 형태적 특성과 비용 저감을 위한 경제성을 고려하였을 때 2000 mg/L의 시비농도는 과하다고 판단된다. 따라서 후박나무 용기묘의 시비는 500 mg/L 혹은 1000 mg/L이 경제적으로나 식물의 형태적으로 가장 이상적인 시비량이라고 판단된다.

Keywords

Acknowledgement

본 논문은 산림청(한국임업진흥원) 산림과학기술 연구개발사업(2020206A00-2022-BA01)의 지원으로 이루어졌음.

References

  1. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1):1.
  2. Cho, M.S., G.N. Kim., S.T. Lee and H.S. Moon. 2012. Effects of fertilization treatments on growth of container and bare root seedlings of Pinus densiflora. J. Agric. Life Sci. 46(2):63-73 (in Japanese with English abstract).
  3. Cho, M.S., S.W. Lee, J.H. Bae and G.S. Park. 2011. Effect of different fertilization on physiological characteristics and growth performances of Eucalyptus pellita and Acacia mangium in a container nursery system. J. Bio-Env. Con. 20(2):123-133.
  4. Choi, K.S., D.E. Koo, H.I. Sung, J.J. Kim, C.O. Won and K.S. Song. 2019. Investigation of the optimal fertilization level for the mass production of container seedling of Tetradium daniellii (Benn.) T.G. Hartley. J. Agric. Life Sci. 53(5):115-125. https://doi.org/10.14397/jals.2019.53.5.115
  5. Choi, S.M., H.C. Shin, K.Y. Huh and H.J. Jung. 2012. Seedling quality of broad-leaved evergreen trees with different shading levels. Plants and Environment 15:265-271.
  6. Eo, H.J., Y.H. Son, S.H. Park, G.H. Park, K.C. Lee and H.J. Son. 2021. Growth and physiological characteristics of containerized seedlings of Sageretia thea at different fertilization treatments. Jour. Korean For. Soc. 110(2):189-197.
  7. Gleeson, S.K. 1993. Optimization of tissue nitrogen and root-shoot allocation. Ann. Bot. 71(1):23-31. https://doi.org/10.1006/anbo.1993.1003
  8. Ha, W.Y., H.S. Shin, H.K. Lim, Y.J. Oh, H.D. Han, K.S. Kim, S.W. Oh, Y.S. Kwon and D.I. Kim. 2019. Growth of one-year-old pot-cultivated 'Fuji'/M.9 apple trees under different concentrations of nitrogen fertilization. Korean J. Plant Res. 32(5): 499-508.
  9. Hilbert, D.W. 1990. Optimization of plant root: shoot ratios and internal nitrogen concentration. Ann. Bot. 66(1):91-99. https://doi.org/10.1093/oxfordjournals.aob.a088005
  10. Horikawa, M., I. Tsuyama, T. Matsui, Y. Kominami and N. Tanaka. 2009. Assessing the potential impacts of climate change on the alpine habitat suitability of Japanese stone pine (Pinus pumila). Landsc. Ecol. 24:115-128 (in Japanese with English abstract). https://doi.org/10.1007/s10980-008-9289-5
  11. Imo, M. and V.R. Timmer. 1999. Vector competition analysis of black spruce seedling responses to nutrient loading and vegetation control. Can. J. For Res. 29(4):474-486. https://doi.org/10.1139/x99-020
  12. Jin, E.J., J.H. Yoon, E.J. Bae, S.M. Choi, Y.B. Park and M.S. Choi. 2015. Effect of above and below-ground container cultivation on growth of Quercus glauca 4 years old seedlings. J. Agric. Life Sci. 49(6):9-17.
  13. Johnson, F. 1996. Artificial Regeneration of Ontarios Forests: Species and Stock Selection Manual. Forest Research Information Paper, No. 131, Ontario Forest Research Inst. Canada.
  14. Kalaji, H.M., G. Schansker, M. Brestic, F. Bussotti, A. Calatayud, L. Ferroni and W. Baba. 2017. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 132(1):13-66. https://doi.org/10.1007/s11120-016-0318-y
  15. Kim, J.J., S.H. Lee, K.S. Song, K.S. Jeon, J.Y. Choi, K.S. Choi and H.I. Sung. 2014. Growth and physiological responses of indeciduous Quercus L. in container by fertilizing treatment. Korean J. Environ. Agric. 33(4):372-380. https://doi.org/10.5338/KJEA.2014.33.4.372
  16. Kim, Y.S. and G.G. Oh. 1997. Restoration model of evergreen broad-leaved forest in warm temperate region(III) -Flora of several islands off the south & east seashore. Korea. Kor. J. Env. Eco. 11(1):61-83.
  17. Kwon, K.W., M.S. Cho, G.N. Kim, S.W. Lee and K.H. Jang. 2009. Photosynthetic characteristics and growth performances of containerized seedling and bare root seedling of Quercus acutissima growing at different fertilizing schemes. Jour. Korean For. Soc. 98(3):331-338.
  18. Lee, K.C., J. An, J.E. Hwang, P.B. Kim, H.B. Park, S. Kim and N.Y. Kim. 2021. Effects of light condition on growth and physiological characteristics of the endangered species Sedirea japonica under RCP 6.0 climate change scenarios. Plants 10(9):1891.
  19. Lee, S.H., H. Heo, K.M. Lee and W.T. Kwon. 2005. Classification of local climatic regions in Korea. Journal of the Korean Meteorological Society 41(6):983-995 (in Japanese with English abstract).
  20. Maier, C.A., S. Palmroth and E. Ward. 2008. Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 concentration. Tree Physiol. 28(4):597-606. https://doi.org/10.1093/treephys/28.4.597
  21. Mathur, S., P. Mehta and A. Jajoo. 2013. Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). Physiol. Mol. Biol. Plants 19(2):179-188. https://doi.org/10.1007/s12298-012-0151-5
  22. Oh, M.Y. 1982. Healthy seedling production and root pruning intensity. Forest Nurseryman Association of Korea 10:5-17.
  23. Reynolds, H.L. and C. Antonio. 1996. The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion. Plant Soil 185(1):75-97. https://doi.org/10.1007/BF02257566
  24. Ritchie, G.A. 1984. Assessing seedling quality. In Duryea, M.L. and T.D. Landis (eds.), Forest Nursery Manual 1: Production of Bareroot Seedlings. Martinus Nijhoff Publishers, Hague, (USA). pp. 243-259.
  25. Ryu, D., J. Bae, J. Park, S. Cho, M. Moon, C.Y. Oh and H.S. Kim. 2014. Responses of native trees species in Korea under elevated carbon dioxide condition-open top chamber experiment. KJAFM 16(3):199-212. https://doi.org/10.5532/KJAFM.2014.16.3.199
  26. Schlichting, C.D. 1986. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Syst. 17:667-693. https://doi.org/10.1146/annurev.es.17.110186.003315
  27. Sharkey, T.D., C.J. Bernacchi, G.D. Farquhar and E.L. Singsaas. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30(9):1035-1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x
  28. Song, K.S., K.S. Jeon, K.S. Choi, J.Y. Choi, H.I. Sung and J.J. Kim. 2014. Growth characteristics of Daphniphyllum macropodum seedlings of warm-temperate landscape tree by shading and fertilization treatment: Research on seedling production of D. macropodum by container nursery for meteorological disasters. Journal of Climate Research 9(1):65-76. https://doi.org/10.14383/cri.2014.9.1.65
  29. Song, Y.G., J.E. Hwang, J. An, P.B. Kim, H.B. Park, H.J. Park and K.C. Lee. 2022. The growth and physiological characteristics of the endangered CAM plant, Nadopungnan (Sedirea japonica), under drought and climate change scenarios. Forests 13(11):1823.
  30. Sung, H.I., K.S. Choi, J.J. Kim and K.S. Song. 2020. Investigation of the optimal fertilization level for production of container seedling of Quercus myrsinaefolia. J. Agric. Life Sci. 54(3):17-26.
  31. Timmer, V.R. and G. Armstrong. 1987. Growth and nutrition of containerized Pinus resinosa at exponentially increasing nutrient additions. Can. J. For Res. 17(7):644-647. https://doi.org/10.1139/x87-105
  32. Tsuyama, I., T. Matsui, M. Ogawa, Y. Kominami and N. Tanaka. 2008. Habitat prediction and impact assessment of climate change on Sasa Kurilensis in eastern Honshu. Japan. Theory and Applications of GIS 16(1):11-25. https://doi.org/10.5638/thagis.16.11
  33. Yun, J.H., N. Katsuhiro, C.H. Park, B.Y. Lee. 2011. Potential habitats and change prediction of Machilus thunbergii Siebold & Zucc. in Korea by climate change Korea. J. Ecol. Environ. 25(6):903-910 (in Japanese with English abstract).