Browse > Article
http://dx.doi.org/10.7740/kjcs.2016.61.4.242

Germination-Induced Changes in Flavoring Compound Profiles and Phytonutrient Contents in Scented Rice  

Mahmud, MM Chayan (Department of Medical Biotechnology, Soonchunhyang University)
Das, Animesh Chandra (Department of Medical Biotechnology, Soonchunhyang University)
Lee, Seul-Ki (Department of Medical Biotechnology, Soonchunhyang University)
Kim, Tae-Hyeong (Seepia)
Oh, Yejin (Seepia)
Cho, Yoo-Hyun (CJ CHEILJEDANG Corporation)
Lee, Young-Sang (Department of Medical Biotechnology, Soonchunhyang University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.61, no.4, 2016 , pp. 242-250 More about this Journal
Abstract
Although rice has been cultivated as a major food crop for approximately 5,000 years, the interest of customers in 'scented rice' is a recent trend in the Korean market. As a part of developing a germinated scented rice variety, the newly bred scented rice variety 'Cheonjihyang-1 se' was germinated for 24 h, and changes in profiles of flavor-related volatiles, lipophilic phytonutrients, and fatty acids were investigated. The profiling of volatile compounds by using a headspace-gas chromatography-mass spectrometry (HS-GC-MS) revealed a total of 56 odor-active flavoring compounds; 52 at the pre-germination stage, 51 at the post-germination stage, and 47 common at both stages. The major flavoring compounds were nonanol and benzene, which constituted 11.5% and 6.6%, respectively, of the total peak area in pre-germinated rice, and 19.4% and 6.5%, respectively, in post-germinated rice. Germination induced an increase in 13 flavoring compounds, including 3,3,5-trimethylheptane and 1-pentadecene, which increased by 763 and 513%, respectively by germination. However, we observed a germination-induced decrease in most of the other flavoring compounds. Especially, the most important scented rice-specific popcorn-flavoring compound, 2-acetyl-1-pyrroline, showed 89% decrease due to germination. Furthermore, the germination of scented rice induced a decrease in the content of various phytonutrients. For example, the total contents of phytosterols, squalene, and tocols decreased from 207.97, 31.74, and $25.32{\mu}g\;g^{-1}$ at pre-germination stage down to 136.66, 25.12, and $17.76{\mu}g\;g^{-1}$, respectively at post-germination stage. The fatty acid compositions were also affected by germination. The composition of three major fatty acids, linoleic, oleic, and palmitic acids, increased from 36.6, 34.2, and 24.4%, respectively, at the pre-germination stage to 37.9, 36.9, and 20.7%, respectively, at the post-germination stage. All these results suggested significant changes in the flavor-related compounds and phytonutrients of the scented rice variety 'Cheonjihyang-1 se' during the process of germination, and subsequently the need for developing a more precise process of germination to enhance the flavor and nutritional quality of the germinated scented rice products.
Keywords
flavor; GC-MS; germination; phytonutrient; scented rice; SPME; volatile;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Baradi, M. A. U. and A. R. Elepano. 2012. Aroma loss in rice as affected by various conditions during postharvest operations. Phiipp. Agric. Scientist. 95 : 260-266.
2 Bryant, R. J. and A. M. McClung. 2011. Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC-MS. Food Chemistry. 124 : 501-513.   DOI
3 Buttery, R. G., J. G. Turnbaugh, and L. C. Ling. 1986. Contribution of volatiles to rice aroma. J. Agric. Food Chem. 36 : 1006-1009.
4 Cho, K. S., H. J. Kim, S. M. Moon, J. H. Kang, and Y. S. Lee. 2006. Optimization of one-step extraction/methylation method for analysis of fatty acid composition in brown rice. Korea. J. Crop Sci. 51 : 89-94.
5 Jezussek, M., B. O. Juliano, and P. Schieberle. 2002. Comparisons of key aroma compounds in cooked brown rice varieties based on aroma extraction dilution analysis. J. Agric. Food Chem. 50 : 1101-1105.   DOI
6 Choi, Y. G., M. K. Kim, K. H. Jung, S. Y. Cho, H. P. Moon, B. T. Jun, H. C. Choi, N. G. Park, G. W. Kim, K. H. Hwang, Y. S. Kim, R. K. Park, and J. Y. Cho. 1995. An aromatic semi-dwarf lodging resistant rice variety 'Hyangmibyeo1ho'. Agricultural Science Reports of RDA, Korea. 37 : 67-74.
7 Choi, I. S., J. Suh, J. H. Kim, and S. L. Kim. 2009. Effects of germination on fatty acid and free amino acid profiles of brown rice 'Keunnun'. Food Sci. Biotehcnol. 18 : 799-802.
8 Grimm, C., C. Bergman, J. T. Delgado, and R. Bryant. 2001. Screening for 2-acetyl-1-pyrroline in the headspace of rice using SPME/GC-MS. J. Agric. Food Chem. 49 : 2445-249.
9 Jung, H. Y., D. H. Lee, H. Y. Baek, and Y. S. Lee. 2008. Pre- and post-germination changes in pharmaceutical compounds of germinated brown rice. Korea. J. Crop Sci. 53 : 37-43.
10 Kim, H. Y., I. G. Hwang, T. M. Kim, K. S. Woo, D. S. Park, J. H. Kim, D. J. Kim, J. Lee, Y. R. Lee, and H. S. Jeong. 2012. Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chemistry. 134 : 288-293.   DOI
11 Kim, W. Y., J. H. Kim, S. A. Lee, S. N. Ryu, S. J. Han, and S. G. Hong. 2010. Antioxidative and anti-diabetic activity of C3GHi, novel black rice breed. Korean J. Crop Sci. 55 : 38-46.
12 Kwak, J. E., S. W. Yoon, D. J. Kim, M. R. Yoon, J. H. Lee, S. K. Oh, I. H. Kim, J. S. Lee, J. S. Lee, and J. K. Chang. 2013. Changes in nutraceutical lipid constituents of pre- and post-germinated brown rice oil. Korean J. Food & Nutr. 26 : 591-600.   DOI
13 Kim, J. S., J. R. Cho, J. G. Gwang, T. S. Kim, S. N Ahn, and S. Y. Lee. 2009. Comparison analysis of aromatic compounds in the aromatic rice germplasm by gas chromatography and mass spectrometry. Korean J. Crop Sci. 54 : 88-103.
14 Kim, M. Y. 2014. Effects of high hydrostatic pressure treatment on the enhancement of functional components and physiological activities of germinated Oryza sativa L. M. S. Thesis. Chungbook Univ.
15 Kim, S. L., Y. K. Son, J. R. Son, and H. S. Huh. 2001. Effect of germination condition and drying methods on physicochemical properties of sprouted brown rice. Korean J. Crop Sci. 46 : 221-228.
16 Lee, Y. R., I. G. Hwang, K. S. Woo, H. Y. Kim, D. S. Park, J. H. Kim, Y. B. Kim, J. Lee, and H. S. Jeong. 2011. Hypoglycemic effects of germinated rough rice extract in Steptozotocin-induced diabetic rats. J. Food Sci. Nutr. 16 : 272-277.
17 Kovach, M. J., M. N. Calingacion, M. A. Fitzgerald, and S. R. McCouch. 2009. The origin and evolution of fragnance in rice (OryzasativaL.). PNAS 106 : 14444-14449.   DOI
18 Lee, B. Y., J. R. Son, M. Ushio, K. Keiji, and M. Akio. 1991. Changes of volatile components of cooked rice during storage at $70^{\circ}C$. J. Korean Soc. Food Sci. Technol. 23 : 610-613.
19 Lee, K. B., D. K. Jun, and J. C. Chae. 2003. Effect of nitrogen fertilization on quality characteristics of rice grain and aroma-active compounds of cooked rice. Korea J. Crop Sci. 48 : 527-533.
20 Moon, S. H., K. B. Lee, and M. K. Han. 2010. Comparison of GABA and vitamin contents of germinated brown rice soaked indifferent soaking solution. Korean J Food & Nutr 23 : 511-515.
21 Nijssen, L. M., C. A. van Ingen-Visscher, and J. J. H. Donders, 2016. VCF Volatile Compounds in Food : database Version 16.2 Zeist (The Netherlands): Triskelion (http://www.vcf-online.nl/VcfGuide.cfm?title=Bibliographic)
22 Oh, S. K., P. S. Hwang, K. J. Kim, Y. K. Kim, and J. H. Lee. 2010. Changes in nutritional components throughout germination in paddy rice and brown rice. J. Food Sci. Nutr. 15 : 113-119.
23 Singh R. K., U. S. Sigh, and G. S. Khush. 2000. Aromatic Rices. Oxford & IBH Publishing Co/ Pvt. Ltd. pp. 292.
24 Sung, J., J. Lee, S. K. Oh, J. S. Lee, and W. S. Choi. 2013. Changes in phytochemical content and antiproliferative activity of germinated Keunnun and Ilpum rice varieties. J. Korean Soc. Food Sci. Nutr. 42 : 1157-1161.   DOI
25 Shu, X. L., T. Frank, Q. Y. Shu, and K. H. Engel. 2008. Metabolite profiling of germinating rice seeds. J. Agric. Food Chem. 56 : 11612-11620.   DOI
26 Xia, J., I. Sinelnikov, B. Han, and D. S. Wishart. 2015. Metabo Analyst 3.0- making metabolomics more meaningful. Nucl. Acids Res. 43, W251-257.   DOI