DOI QR코드

DOI QR Code

Comparison of Ventilation Efficiency in an Enclosed and Conventional Growing-Finishing Pig House

개방형과 무창형 육성비육돈사의 환기효율 비교

  • Song, J.I. (National Livestock Research Institute, R.D.A.) ;
  • Choi, D.Y. (National Livestock Research Institute, R.D.A.) ;
  • Jung, J.W. (National Livestock Research Institute, R.D.A.) ;
  • Yang, C.B. (National Livestock Research Institute, R.D.A.) ;
  • Choi, H.L. (School of Agricultural Biotechnology Engineering, Seoul National University)
  • Published : 2004.06.30

Abstract

An experiment was conducted to establish comparison of ventulation efficiency in an enclosed and conventional growing-finishing pig house. The main results of the experiment are as follows : In the established temperature was sustained at the level of summer 24.8${\sim}$29.1$^{\circ}C$, winter 17.9${\sim}$23.1$^{\circ}C$ during the experimental period of enclosed growing-finishing pig house, and conventional growing-finishing pig house was at the lovel of summer 24.7${\sim}$32.3$^{\circ}C$, winter 14.5${\sim}$18.2$^{\circ}C$ during the experimental period respectively. As for the results of dertimental gas(ammonia) concentration ratio analysis, while the conventional pig house sustained of summer 9.3${\sim}$16.9 mg/$\ell$ level, enclosed growing-finishing pig house sustained of summer 7.9${\sim}$16.1 mg/$\ell$, and the latter one is lower than that of the conventional growing-finishing pig house. Air flow rate on the floor level which is the low part of pen and the active area of pigs in the enclosed growing and finishing pig house during winter was measured at 0 to 0.87 m/s at the 0.01 to 2.73 m/s at the maximum ventilation efficiency. As for breeding pigs in summer, the pigs from the conventional pig house weighed 100.2kg, on the other hand, the pigs from enclosed growing-finishing pig house weighed 107.3 kg ; the differnce between the two kinds was about 7 kg. This was because the most adequate environment, which was not influenced by the exterior atmosphere, was offered to the pigs from enclosed growing-finishing pig house, and all of this could reduce pigs stress effectively.

본 연구는 우리 나라에 건축되어져 있는 개방육성비육돈사와 무창육성비육돈사의 환경효율을 검증하고자 하였다. 본 실험은 실험돈사에서 겨울철과 여름철로 나누어 실시한 실험결과는 다음과 같다. 1) 무창육성비육돈사는 외부의 기온 변화가 심하더라도 돈사내부의 온도는 외부기온의 영향을 받지 않고 여름철 24.8${\sim}$29.1$^{\circ}C$, 겨울철 17.9${\sim}$23.1$^{\circ}C$를 유지하였으나 개방육성비육돈사는 여름철 24.7${\sim}$32.3$^{\circ}C$, 겨울철 14.5${\sim}$18.2$^{\circ}C$를 유지하여 온도효율이 낮았다. 2) 암모니아 농도를 측정한 바 개방육성비육돈사는 여름철 9.31${\sim}$16.9 mg/$\ell$, 겨울철 5.1${\sim}$19.7 mg/$\ell$로 측정되었으며, 무창육성비육돈사는 공기입기 및 배기의 효율적인 구성으로 여름철 7.9${\sim}$16.1 mg/$\ell$, 겨울철 3.7${\sim}$9.6 mg/$\ell$를 유지하여 개방육성비육돈사 보다는 낮게 나타났다. 3) 무창육성비육돈사는 돼지생육 공간(하부)의 공기유속이 겨울철 최소환기(5%) 수준으로 하였을 때 0.0${\sim}$0.87 m/s 였으며, 여름철 최대환기(95%) 수준에서는 0.1${\sim}$2.73 m/s로 분포되어 여름철 및 겨울철의 무창육성비육돈사내 공기유속이 개방육성비육돈사보다 양호하였다. 4) 여름철 비육돈출하시(평균 110 kg 전후)의 체중은 개방육성비육돈사는 100.2인데 비하여 무창육성비육돈사에서의 체중은 107.3kg으로 약 7kg 정도의 차이로 빠른 증체를 가져왔는데, 이것은 외기의 영향을 영향을 크게 받지 않고 일정한 환경을 유지해 주어 스트레스를 줄여 주었기 때문으로 판단된다.

Keywords

References

  1. Adre, N. and Albright, L. D. 1994. Criterion for establishing similar air flow patterns in slotted-inlet ventillJt,ed enclosures. TRANSACTIONS of the ASAE. 37(1):235-250. https://doi.org/10.13031/2013.28077
  2. Barker, J., Curtis, S., Hogsett, O. and Humenik, F. 1986. Safety in swine production systems. Pork industry Handbook. PIH. 104.
  3. Bond, T. E., Heitman, Jr. H. and Kelly, C. F. 1965. Effects of increased air volocities on heat' and moisture loss and growth of swine. TRANSACTIONS of the ASAE. 8(2):1671-169.
  4. Broce, J. M. 1981. Ventilation and temperature control criteria for pigs. In : J. A.(ed), Environmental aspects of housing for animal production. Butterworths, London, pp. 197-216.
  5. Close, W. H. 1981. The climatic requirements of the pig. In : J. A.(ed), Environmental aspects of housing for animal production. Butterworths, London, pp. 149-166.
  6. Geers, R, Goedseels, 'V., De Laet, B. and Verstegen, M. W. A. 1986. The group postural behaviour of growing pigs in relation to air velocity, air and floor temperature. Applied Animal Behaviour Science 16. 353-362.
  7. Grob, W., Foerster, E. P. and Tribble, L. F. 1974. Swine building air contaminant control with pit ventilation. Presented at the 1974 Wmter Meeting. Paper No. 74-4532. ASAE, St. Joseph, MI.
  8. McArthur, A. J. 1987. Thermal interaction between animal and microclimate : a comprehensive model. Journal of Theotetical Biology 126. 203-218.
  9. Monreal, G. 1989. Livestock Housing. Chapter 2. Environment and Animal Health. CAB Intemational. p. 33.
  10. MWPS. 1990. Mechanical Ventilating Systems for Livestock Housing. MWPS-32. Midwest Plan Service. Iowa State University, Ames.
  11. Sainsbury, D. W. B. and Mrcvs, F. 1995. Pig health, Environment and housing. The health of pigs. Longman Scientific & Technical. 69.
  12. SAS. 1990. SASISTAT User's guide Vol. 2. SAS institute Ine., Cary, NC., USA.
  13. Smith, A. T. 1987. Current pig production systems. In : Smith, A. T. and Lawrence, T. L. J.(eds), Pig Housing and the Environment. BSAP Occasional Pubilcation No. 11.
  14. Spillman, C. K.. and Hinlde, C. N. 1971. Conduction heat transfer from swine to controlled temperature floors. TRANSACTIONS of the ASAE. 14(2):301-303. https://doi.org/10.13031/2013.38280
  15. Wathes, C. M., Howard, K., Jones, C. D. R. and Webster, A. J. F. 1983. Ventilation, air hygiene and animal health. Veterinary Record 113. 554-559.
  16. Webster, A. J. F. 1985. Animal health and the housing enveronment. In : Animal Health and Productvity. Royal Agricultural Society of England. pp. 227-242.
  17. 유재일, 주정유, 김성철, 박종수, 장동일, 장홍희, 임영일. 1998. 최적 환경제어를 위한 한국형 돈사 모델 개발. 축산시설환경학회지. 4(2):113-126.
  18. 축산기술연구소 보고서. 1999. p. 229.
  19. 최홍림, 송준익, 안희권. 2000. 전업양축농가를 위한 남부지방 돈사의 구조 및 환경실태조사. 축산 시설환경학회지. 6(2):1-14.