• Title/Summary/Keyword: $H_2$/$H_{\infty}$ Control

Search Result 238, Processing Time 0.024 seconds

Comparison of Control Performance in Electro.hydraulic Servo Systems (전기.유압 서보 시스템의 제어성능 비교)

  • Kim, D.T.;Park, K.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.14-20
    • /
    • 2006
  • A controller design procedure for an electro-hydraulic positioning systems has been developed using $H{\infty}$ control. The generalized plant models and weighting function for multiplicative uncertainty modelling error was presented along with $H{\infty}$ controller designs in order to investigate the robust stability and performance. Both disturbance rejection and command tracking performances were improved with the $H{\infty}$ controller, and the better uniformity of time response is achieved across wide range of operating conditions than the PID, LQR and LQG control scheme. The multiplicative uncertainty case was specifically suited for the design of an electro-hydraulic positioning control systems using $H{\infty}$ control.

  • PDF

Design of a Mixed $H_2/H_{\infty}$ PID Controller for Speed Control of Brushless DC Motor by Genetic Algorithm (유전 알고리즘에 의한 브러시리스 DC모터의 속도 제어용 혼합 $H_2/H_{\infty}$ PID제어기 설계)

  • Duy Vo Hoang;Phuong Nguyen Thanh;Kim Hak-Kyeong;Kim Sang-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.77-78
    • /
    • 2006
  • A mixed method between $H_2\;and\;H_{\infty}$ control are widely applied to systems which has parameter perturbation and uncertain model to obtain an optimal robust controller. Brushless Direct Current (BLDC) motors are widely used for high performance control applications. Conventional PID controller only provides satisfactory performance for set-point regulation. However, with the presence of nonlinearities, uncertainties and perturbations in the system, conventional PID is not sufficient to achieve an optimal robust controller. This paper presents an approach to ease designing a Mixed $H_2/H_{\infty}$ PID controller for controlling speed of Brushless DC motors and the genetic algorithm is used to solve the optimized problems. Numerical results are shown to prove that the performance in the proposed controller is better than that in the optimal PID controller using LQR approach.

  • PDF

Mixed $H_2/H_{$\infty}$ and $\mu$-synthesis Approach to the Coupled Three-Inertia Problem (혼합 $H_2/H_{$\infty}$$\mu$-설계이론을 이용한 3관성 문제의 해법)

  • Choe, Yeon-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.896-903
    • /
    • 2001
  • This study investigates the use of mixed $H_2/H_{$\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertial system that reflects the dynamics of mechanical vibrations. This kind of problem requires to be satisfied the robust performance (both in the time and frequency-domain specifications). We, first, adopt the mixed $H_2/H_{$\infty}$ theory to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty. This process permits higher levels of controller authority and reduces the conservativeness of the controller. Finally, the feedforward controller is also used to improve the transient response of the output. We confirm that all design specifications except a complementary sensitivity condition can be achieved.

  • PDF

High Speed Positioning of a Pneumatic Control System with a $H_{\infty}$ Controller ($H_{\infty}$ 제어기를 이용한 공기압 구동시스템의 위치제어 성능 향상에 관한 연구)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 1998
  • To improve control performance, especially positioning speed, of a pneumatic positioning system, dynamic characteristics of a control valve should be considered. In case we design controller including dynamic characteristics of a control valve, it's not easy to design controller gain using simple state feedback because degree of a control system is increased. This study designed controller using loop shaping of $H_{\infty}$ control theory for a model composed of a pneumatic actuator and a control valve, and positioning experiment using this controller was performed. As a result, it was verified that the controller is useful for high speed positioning of a pneumatic positioning system.

  • PDF

Fuzzy H2/H Controller Design for Delayed Nonlinear Systems with Saturating Input (포화입력을 가지는 시간지연 비선형 시스템의 퍼지 H2/H 제어기 설계)

  • Cho, Hee-Soo;Lee, Kap-Rai;Park, Hong-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.239-245
    • /
    • 2002
  • In this Paper, we present a method for designing fuzzy $H_2/H_{\infty}$ controllers of delayed nonlinear systems with saturating input. Takagi-Sugeno fuzzy model is employed to represent delayed nonlinear systems with saturating input. The fuzzy control systems utilize the concept of the so-called parallel distributed compensation(PDC). Using a single quadratic Lyapunov function, the globally exponential stability and $H_2/H_{\infty}$ performance problem are discussed. And a sufficient condition for the existence of fuzzy $H_2/H_{\infty}$ controllers is given in terms of linear matrix inequalities(LMIs). The designing fuzzy $H_2/H_{\infty}$ controllers minimize an upper bound on a linear quadratic performance measure. Finally, a design example of fuzzy $H_2/H_{\infty}$ controller for uncertain delayed nonlinear systems with saturating input.

Mixed $H_{2}/H_{\infty}$ Controller Design for Descriptor Systems (디스크립터 시스템을 위한 혼합 $H_{2}/H_{\infty}$제어기의 설계)

  • Choe, Yeon-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.483-490
    • /
    • 2004
  • The descriptor system model has a high ability in representing dynamical systems. It can preserve physical parameters in the coefficient matrices, and describe the dynamic part, static part, and even the improper part of the system in the same form. The design of mixed $H_{2}/H_{\infty}$ controllers for linear time-invariant descriptor systems is considered in this paper. Firstly, an $H_2$ and $H_{\infty}$ synthesis problems fur a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, we show that the existence of a mixed $H_2/H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_2$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables.

State Feedback $H^{\infty}$ Controller Design for Linear Systems with Time-delays (시간지연을 가지는 선형 시스템에 대한 상태궤환 $H^{\infty}$제어기 설계)

  • Jeong, Eun-Tae;Lee, Gap-Rae;Lee, Jae-Myeong;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 1996
  • This paper presents a state feedback $H^{\infty}$ controller design method for linear systems with delayed states and inputs. We derive a sufficient condition that the closed-loop system is asymptotically stable for all time-delays and that the $H^{\infty}$-norm of the closed-loop transfer function is less than or equal to some prescribed level $\gamma$. And we propose a sufficient condition for the existence of a state feedback $H^{\infty}$ controller using a form of linear matrix inequality(LMI). Furthermore, we show that the state feedback $H^{\infty}$ controllers can be obtained from solutions satisfying LMI.

  • PDF

Robust Non-Fragile $H_{\infty}$ Output Feedback Control for Descriptor Systems with Parameter Uncertainties (변수 불확실성을 가지는 특이시스템의 강인 비약성 $H_{\infty}$ 출력궤환 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.389-395
    • /
    • 2007
  • In this paper, we consider the robust non-fragile $H_{\infty}$ output feedback controller design method for uncertain descriptor systems with feedback and observer gain variations. The existence condition of observer-based robust and non-fragile $H_{\infty}$ output feedback controller and the controller design method are Presented on the basis of linear matrix inequality approach. The proposed robust non-fragile $H_{\infty}$ output feedback controller guarantees asymptotic stability, non-fragility, $H_{\infty}$ norm bound within a prescribed level in spite of disturbance, parameter uncertainty, and feedback/observer gain variations.

Mixed H_2/H_{\infty}$ controller design algorithm for robust performance optimization (견실성능 최적화를 위한 혼합 H_2/H_{\infty}$ 제어기설계 알고리즘)

  • 김종해;방경호;박홍배
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.10-16
    • /
    • 1996
  • In this paper, we consider a generalized mixed H_2/H_{\infty}$ output feedback problem. It is finding an internally stabilizing controller that minimizes a mixed $H_{2}$/ $H_{performance}$ measure. We show that a generalized mixed H_2/H_{\infty}$ system with two exogenous inputs and two controlled signals is transformed into auxiliary system with two exogenous inputs and one controlled signal. The two systems have equivalent performance. Therefore, a complete solution of generalized mixed H_2/H_{\infty}$ output feedback problem is achieved by existing results of mixed H_2/H_{\infty}$ control theory.

  • PDF

A Design of Model Following Optimal Multivariable BOiler-Turbine H_\infty Control System using Genetic Algorithm (유전 알고리즘을 이용한 모델 추종형 최적 다변수 보일러-터빈 H_\infty제어 시스템의 세계)

  • Hwang, Hyeon-Jun;Kim, Dong-Wan;Park, Jun-Ho;Hwang, Chang-Seon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Multivarialbe Boiler-Turbine H_\infty Control System Genetic Algorithm Weighting Functions $W_1$(s), $W_2$(s), and design parameter $\gamma$ that are given by Glover-Doyle algorithm, to optimally follow the output of reference model. The first method to do this is that the gains of weighting functions $W_1$(s), $W_2$(s), and design parameter are optimized simultaneously by genetic algorithm with the tournament method that can search more diversely, in the search domain which guarantees the robust stability of system. And the second method is that not only by genetic algorithm with the roulette-wheel method that can search more fast, in that search domain. The boiler-turbine H_\infty control system designed by theabove second method has not only the robust stability to a modeling error but also the the better command tracking preformance than those of the H_\infty control system designed by trial-and-error method and the above first method. Also, this boiler-turbine H_\infty control system has the better performance than that of the LQG/LTR contro lsystem. The effectiveness of this boiler-turbineH_\infty control system is verified by computer simulation.

  • PDF