• Title/Summary/Keyword: $H{\ddot{o}}lder$ estimate

Search Result 4, Processing Time 0.021 seconds

AN EXISTENCE AND UNIQUENESS THEOREM OF STOCHASTIC DIFFERENTIAL EQUATIONS AND THE PROPERTIES OF THEIR SOLUTION

  • BAE, MUN-JIN;PARK, CHAN-HO;KIM, YOUNG-HO
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.491-506
    • /
    • 2019
  • In this paper, we show the existence and uniqueness of solution to stochastic differential equations under weakened $H{\ddot{o}}lder$ condition and a weakened linear growth condition. Furthermore, the properties of their solutions investigated and estimate for the error between Picard iterations $x_n(t)$ and the unique solution x(t) of SDEs.

NOTE ON LOCAL ESTIMATES FOR WEAK SOLUTION OF BOUNDARY VALUE PROBLEM FOR SECOND ORDER PARABOLIC EQUATION

  • Choi, Jongkeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1123-1148
    • /
    • 2016
  • The aim of this note is to provide detailed proofs for local estimates near the boundary for weak solutions of second order parabolic equations in divergence form with time-dependent measurable coefficients subject to Neumann boundary condition. The corresponding parabolic equations with Dirichlet boundary condition are also considered.

A VAN DER CORPUT TYPE LEMMA FOR OSCILLATORY INTEGRALS WITH HÖLDER AMPLITUDES AND ITS APPLICATIONS

  • Al-Qassem, Hussain;Cheng, Leslie;Pan, Yibiao
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.487-499
    • /
    • 2021
  • We prove a decay estimate for oscillatory integrals with Hölder amplitudes and polynomial phases. The estimate allows us to answer certain questions concerning the uniform boundedness of oscillatory singular integrals on various spaces.

THE BOUNDARY HARNACK PRINCIPLE IN HÖLDER DOMAINS WITH A STRONG REGULARITY

  • Kim, Hyejin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1741-1751
    • /
    • 2016
  • We prove the boundary Harnack principle and the Carleson type estimate for ratios of solutions u/v of non-divergence second order elliptic equations $Lu=a_{ij}D_{ij}+b_iD_iu=0$ in a bounded domain ${\Omega}{\subset}R_n$. We assume that $b_i{\in}L^n({\Omega})$ and ${\Omega}$ is a $H{\ddot{o}}lder$ domain of order ${\alpha}{\in}$ (0, 1) satisfying a strong regularity condition.