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Abstract. In this paper, we show the existence and uniqueness of solution

to stochastic differential equations under weakened Hölder condition and
a weakened linear growth condition. Furthermore, the properties of their

solutions investigated and estimate for the error between Picard iterations
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1. Introduction

The inclusion of random effects in differential equation leads to two distinct
classes of equations, for which the solution processes have differentiable and non-
differentiable sample paths, respectively. They require fundamentally different
methods of analysis. The first, and simpler, class arises when an ordinary dif-
ferential equation has random coefficients, a random initial value or is forced by
a fairly regular stochastic process, or when any combination of these holds. The
equations are called random differential equations and are solved sample path
by sample path as ordinary differential equations.

The second class occurs when the forcing is an irregular stochastic process
such as Gaussian white noise. The equations are written symbolically as stochas-
tic differentials, but are interpreted as integral equations with Itô or Stratonovich
stochastic integrals. They are called stochastic differential equations, which
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we shall abbreviate by SDEs, and in general their solutions inherit the non-
differentiability of sample paths from the Wiener processes in the stochastic
integrals.

Mao Xuerong had investigated the following SDEs;

dx(t) = f (x(t), t) dt+ g (x(t), t) dB(t), (1)

on the closed interval [t0, T ], t0 ≤ T in his book [1], and be obtained that if
Lipschitz condition (2) and linear growth condition (3) hold, namely, for any
x, y ∈ Rd and t ∈ [t0, T ], it follows that

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ K|x− y|2, K > 0. (2)

For any (x, t) ∈ Rd × [t0, T ], it follows that

|f(x, t)|2 ∨ |g(x, t)|2 ≤ K
(
1 + |x|2

)
, K > 0 (3)

then (1) had a unique solution x(t), moreover x(t) ∈M2
(
[t0, T ];Rd

)
.

After that the studies of the existence and uniqueness theorem of the SDEs
has been conducted in [1], [3]-[9]. Motivated by [7], we will investigate the
existence and uniqueness theorem of the solution for SDEs at a phase space
M2

(
[t0, T ];Rd

)
in this paper. We still take t0 ∈ R as our initial time throughout

this paper. And we want to prove our main results as follows; first, under
the weakened Hölder condition and the weakened linear growth condition, we
estimate bounded of the solution for SDEs. Next, we prove the existence and
uniqueness theorem of the solution for SDEs. Finally, we derived the estimate
for the error between Picard iterations xn(t) and the unique solution x(t) of
SDEs.

2. Preliminary

Let one norm | · | denote Euclidean in Rn. If A is a matrix or vector its
transpose is denoted by AT ; If A is a matrix, its trace norm is represented by
|A| =

√
trace (ATA). Throughout this paper unless otherwise specified, let t0

be a positive constant and (Ω,F , P ) be a complete probability space with a
filtration {Ft}t≥t0 satisfying the usual conditions.(i.e it is right continuous and
Ft0 contains all P -null sets.) Assume that B(t) = (B1(t), B2(t), · · · , Bm(t))T be
consider the d-dimensional stochastic differential equation of Itô type

dx(t) = f (x(t), t) dt+ g (x(t), t) dB(t), on t0 ≤ t ≤ T (4)

with initial value x(t0) = x0, where f : Rd × [t0, T ]→ Rd and g : Rd × [t0, T ]→
Rd×m be both Borel measurable. By the definition of stochastic differential, this
equation is equivalent to the following stochastic equation:

x(t) = x0 +

∫ t

t0

f(x(x), s)ds+

∫ t

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T. (5)

To be more precise, we give the definition of the solution of the equation (4)
with initial data.
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Definition 2.1. Rd-valued stochastic process x(t) defined on t0 ≤ t ≤ T is
called the solution (4), if x(t) has the following properties;
(i) x(t) is continuous and {x(t)}t0≤t≤T is Ft-adapted;
(ii) {f(x(t), t)} ∈ L1([t0, T ];Rd) and {g(x(t), t)} ∈ L2([t0, T ];Rd×m);
(iii) equation (5) holds for every t ∈ [t0, T ] with probability 1.

A solution {x(t)} is said to be unique if any other solution {x(t)} is indistin-
guishable from {x(t)}, that is

P{x(t) = x(t) for all t0 ≤ t ≤ T} = 1.

The following lemmas are known as special name for stochastic integrals which
was appear in [1] or [2].

Lemma 2.2. (Stachurska’s inequality) [2] Let u(t) and k(t) be nonnegative

continuous functions for t ≥ α , and let u(t) ≤ a(t) + b(t)
∫ t
α
k(s)up(s)ds,

t ∈ J = [α, β), where a
b is nondecreasing function and 0 < p < 1. Then

u(t) ≤ a(t)

(
1− (p− 1)

[
a(t)

b(t)

]p−1 ∫ t

α

k(s)bp(s)ds

) −1
p−1

.

Lemma 2.3. (Hölder’s inequality) [1] If 1
p + 1

p = 1 for any p, q > 1, f ∈ Lp,

and g ∈ Lq, then fg ∈ L1 and
∫ b
a
fgdx ≤

(∫ b
a
|f |pdx

) 1
p
(∫ b

a
|g|qdx

) 1
q

.

Lemma 2.4. (Moment inequality) [1] If p ≥ 2, g ∈ M2([t0, T ] : Rd×m) such

that E
∫ T
t0
|g(s)|pds <∞, then

E

(
sup

0≤t≤T

∣∣∣∣∣
∫ T

t0

g(s)dB(s)

∣∣∣∣∣
p)
≤
(

p3

2(p− 1)

) p
2

T
p−2
2 E

∫ T

t0

|g(s)|pds.

In order to attain the solution of (4) we impose following assumptions.
(H1) (Weakened Hölder condition) For any x, y ∈ Rd and t ∈ [t0, T ], we

assume that

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ K|x− y|2α,

where K is a positive constant and 0 < α ≤ 1 is a constant.
(H2) (Weakened linear growth condtion) For any t ∈ [t0, T ] it follows that

f(0, t), g(0, t) ∈ L2([t0, T ]) it follows that

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K,

where K is a positive constant.
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3. Main Results

In order to obtain the existence of solutions to SDEs, let x0(t) = x0 for
t0 ≤ t ≤ T . For each n = 1, 2, · · · , and define Picard sequence

xn(t) = x0 +

∫ t

t0

f (xn−1(s), s) ds+

∫ t

t0

g (xn−1(s), s) dB(s). (6)

Now we give the existence and uniqueness theorem to the solution of equation
(4) by approximate solutions by means of Picard sequence.

Theorem 3.1. Assume that (H1), (H2) hold. Then there exists a unique solu-
tion to the SDEs (4). Moreover, the solution belongs to M2

(
[t0, T ];Rd

)
.

We prepare two lemmas in order to prove this theorem.

Lemma 3.2. Let u(t) and a(t) be continuous functions on [0, T ]. Let k ≥ 1 and

0 < p ≤ 1 be constants. If u(t) ≤ k +
∫ t
t0
a(s)up(s)ds for t ∈ [t0, T ] then

u(t) ≤ k exp

(∫ t

t0

a(s)ds

)
for t ∈ [t0, T ]

Lemma 3.3. Let the assumption (H1) and (H2) hold. If x(t) is a solution of
(4), then

E

(
sup

t0≤t≤T
|x(t)|2

)
≤ C exp

(
6(T − t0 + 4)K(T − t0)

)
,

where C = 3E|x0|2 + 6(T − t0 + 4)K(T − t0) with C ≥ 1.

Proof. For each number n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |x(t)| ≥ n}.
Clearly, as n → ∞, τn ↑ T a.s. Let xn(t) = x(t ∧ τn), t ∈ [t0, T ].Then xn(t)
satisfies the following equation

xn(t) = x0 +

∫ t

t0

f (xn(s), s) I[t0,τn](s)ds+

∫ t

t0

g (xn(s), s) I[t0,τn](s)dB(s).

Using the elementary (a+ b+ c)2 ≤ 3(a2 + b2 + c2), one gets

|xn(t)|2

≤ 3

[
|x0|2 +

∣∣∣∣∫ t

t0

f(xn(s), s)I[t0,τn](s)ds

∣∣∣∣2 +

∣∣∣∣∫ t

t0

g(xn(s), s)I[t0,τn](s)dB(s)

∣∣∣∣2
]
.

Taking the expectation on both sides, one sees that

E

(
sup

t0≤s≤t
|xn(s)|2

)
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≤ 3

[
E|x0|2 + E

(
sup

t0≤s≤t

∣∣∣∣∫ s

t0

f(xn(r), r)I[t0,τn](r)dr

∣∣∣∣2
)

+ E

(
sup

t0≤s≤t

∣∣∣∣∫ s

t0

g(xn(r), r)I[t0,τn](r)dr

∣∣∣∣2
)]

.

By Hölder inequality and lemma 2.3, one can show that

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ 3

[
E|x0|2 + (T − t0)E

∫ t

t0

|f(xn(s), s)|2 ds+ 4E

∫ t

t0

|g(xn(s), s)|2 ds
]
.

By the condition (H1) and (H2), one can show that

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ 3

[
E|x0|2 + (T − t0)E

∫ t

t0

|f(xn(s), s)− f(0, s) + f(0, s)|2 ds

+4E

∫ t

t0

|g(xn(s), s)− g(0, s) + g(0, s)|2 ds
]

≤ 3

[
E|x0|2 + (T − t0)E

∫ t

t0

2
(
|f(xn(s), s)− f(0, s)|2 + |f(0, s)|2

)
ds

+4E

∫ t

t0

(
2|g(xn(s), s)− g(0, s)|2 + 2|g(0, s)|2

)
ds

]
≤ 3

[
E|x0|2 + 2(T − t0 + 4)KE

∫ t

t0

|xn(s)|2αds+ 2(T − t0 + 4)E

∫ t

t0

Kds

]
≤ 3E|x0|2 + 6(T − t0 + 4)K(T − t0) + 6(T − t0 + 4)K

∫ t

t0

E|xn(s)|2αds

≤ C + 6(T − t0 + 4)K

∫ t

t0

E

(
sup

t0≤r≤s
|xn(r)|2α

)
ds,

where C = 3E|x0|2 + 6(T − t0 + 4)K(T − t0). By the lemma 3.2

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ C exp

(
6(T − t0 + 4)K(T − t0)

)
with C ≥ 1. We deduce that

E

(
sup

t0≤s≤t
|xn(s ∧ τn)|2

)
≤ C exp

(
6(T − t0 + 4)K(T − t0)

)
.

Consequently the required inequality follows by letting n→∞. �
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Proof of Theorem 3.1. To check the uniqueness, let x(t) and x(t) be any two
solutions of (4). By Lemma 3.3, x(t), x(t) ∈M2

(
[t0, T ];Rd

)
. Note that

x(t)− x(t)

=

∫ t

t0

[f(x(s), s)− f(x(s), s)]ds+

∫ t

t0

[g(x(s), s)− g(x(s), s)]dB(s).

By the elementary inequality (a+ b)2 = 2(a2 + b2), one then gets

|x(t)− x(t)|2

≤ 2

∣∣∣∣∫ t

t0

[f(x(s), s)− f(x(s), s)]ds

∣∣∣∣2 + 2

∣∣∣∣∫ t

t0

[g(x(s), s)− g(x(s), s)]dB(s)

∣∣∣∣2 .
Taking the expectation on both sides, one sees that

E

(
sup

t0≤s≤t
|x(t)− x(t)|2

)
≤ 2E

∣∣∣∣∫ t

t0

[f(x(s), s)− f(x(s), s)]ds

∣∣∣∣2
+2E

(
sup

t0≤s≤t

∣∣∣∣∫ t

t0

[g(x(s), s)− g(x(s), s)]dB(s)

∣∣∣∣2
)
.

By the Hölder inequality and Lemma 2.3 one can show that

E

(
sup

t0≤s≤t
|x(t)− x(t)|2

)
≤ 2(T − t0)E

∫ t

t0

|f(x(s), s)− f(x(s), s)|2ds (7)

+4E

∫ t

t0

|g(x(s), s)− g(x(s), s)|2ds.

By the condition (H1), one can show that

E

(
sup

t0≤s≤t
|x(s)− x(s)|2

)
≤ 2(T − t0 + 4)E

∫ t

t0

K|x(s)− x(s)|2αds.

This yields that

E

(
sup

t0≤s≤t
|x(s)− x(s)|2

)
≤ 2K(T − t0 + 4)

∫ t

t0

E sup
t0≤r≤s

|x(r)− x(r)|2αds.

Therefore, by the Stachurska’s inequality, we have

E

(
sup

t0≤s≤t
|x(s)− x(s)|2

)
= 0.

Hence, we get x(t) = x(t) for t0 ≤ t ≤ T a.s. The uniqueness has been proved.
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Now we check the existence of the solution using Picard sequence (6). Obvi-
ously, from the Picard iterations, we have x0 ∈ M2

(
[t0, T ];Rd

)
. By induction

xn(t) ∈M2
(
[t0, T ];Rd

)
, in fact

|xn(t)|2 ≤ 3

[
|x0|2 +

∣∣∣∣∫ t

t0

f (xn−1(s), s) ds

∣∣∣∣2 +

∣∣∣∣∫ t

t0

g (xn−1(s), s) dB(s)

∣∣∣∣2
]
.

Taking the expectation on both sides, one see that

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ 3

[
E|x0|2 + E

(
sup

t0≤s≤t

∣∣∣∣∫ s

t0

f (xn−1(r), r) dr

∣∣∣∣2
)

+ E

(
sup

t0≤s≤t

∣∣∣∣∫ s

t0

g (xn−1(r), r) dB(r)

∣∣∣∣2
)]

.

By Hölder inequality and lemma 2.3, one can show that

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ 3

[
E|x0|2 + (T − t0)E

∫ t

t0

|f (xn−1(s), s)|2 ds +4E

∫ t

t0

|g (xn−1(s), s)|2 ds
]
.

By the condition (H1) and (H2), one can show that

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ 3

[
E|x0|2 + (T − t0)E

∫ t

t0

|f (xn−1(s), s)− f(0, s) + f(0, s)|2 ds

+4E

∫ t

t0

|g (xn−1(s), s)− g(0, s) + g(0, s)|2 ds
]

≤ 3
[
E|x0|2 + (T − t0)E

∫ t

t0

(
2 |f (xn−1(s), s)− f(0, s)|2 + 2|f(0, s)|2

)
ds

+4E

∫ t

t0

(
2 |g (xn−1(s), s)− g(0, s)|2 + 2|g(0, s)|2

)
ds

]
≤ 3

[
E|x0|2 + 2(T − t0 + 4)

(
KE

∫ t

t0

|xn−1(s)|2α ds+ E

∫ t

t0

Kds

)]
≤ 3E|x0|2 + 6(T − t0 + 4)K(T − t0) + 6(T − t0 + 4)K

∫ t

t0

E|xn−1(s)|2αds

≤ C + 6(T − t0 + 4)K

∫ t

t0

E

(
sup

t0≤r≤s
|xn−1(r)|2α

)
ds,
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where C = 3E|x0|2 + 6(T − t0 + 4)K(T − t0). It also follows note that for any
k ≥ 1,

max
1≤n≤k

E

(
sup

t0≤s≤t
|xn−1(s)|2α

)
= max

{
E|x0|2α, E

(
sup

t0≤s≤t
|x1(s)|2α

)
, · · · , E

(
sup

t0≤s≤t
|xk−1(s)|2α

)}
≤ max

{
E|x0|2α, E

(
sup

t0≤s≤t
|x1(s)|2α

)
, · · · , E

(
sup

t0≤s≤t
|xk(s)|2α

)}
≤ E|x0|2α + max

1≤n≤k
E

(
sup

t0≤s≤t
|xn(s)|2α

)
.

Therefore, one can derive that

max
1≤n≤k

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ C + 6(T − t0 + 4)E|x0|2α

+6(T − t0 + k)K

∫ t

t0

max
1≤n≤k

E

(
sup

t0≤r≤s
|xn(s)|2α

)
ds

:= γ + 6(T − t0 + k)K

∫ t

t0

max
1≤n≤k

E

(
sup

t0≤r≤s
|xn(s)|2α

)
ds,

where γ = C + 6(T − t0 + 4)E|x0|2α. By lemma 3.2, we have

max
1≤n≤k

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ γ exp

(
6K(T − t0 + 4)(T − t0)

)
with γ ≥ 1. Since k is arbitrary, for all n = 0, 1, 2, · · · , we deduce that

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ γ exp

(
6K(T − t0 + 4)(T − t0)

)
,

which shows the boundedness of the sequence {xn(t), n ≥ 0}.
Next, we check that the sequence {xn(t)} is Cauchy sequence. For all n ≥ 0

and t0 ≤ t ≤ T , we have

xn+1(t)− xn(t)

=

∫ t

t0

[f(xn(s), s)− f(xn−1(s), s)]ds+

∫ t

t0

[g(xn(s), s)− g(xn−1(s), s)]dB(s).

Using an elementary inequality (a+ b)2 ≤ 2a2 + 2b2 and taking the expectation
on both sides, we derive that

E

(
sup

t0≤s≤t
|xn+1(s)− xn(s)|2

)
≤ 2E

(
sup

t0≤s≤t

∣∣∣∣∫ s

t0

[f(xn(r), r)− f(xn−1(r), r)]dr

∣∣∣∣2
)
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+2E

(
sup

t0≤s≤t

∣∣∣∣∫ s

t0

[g(xn(r), r)− g(xn−1(r), r)]dB(r)

∣∣∣∣2
)
.

By Hölder inequality and lemma 2.3 and condition (H1), one can show that

E

(
sup

t0≤s≤t
|xn+1(s)− xn(s)|2

)
≤ 2(T − t0)KE

∫ t

t0

sup
t0≤r≤s

|xn(r)− xn−1(r)|2αds

+8KE

∫ t

t0

sup
t0≤r≤s

|xn(r)− xn−1(r)|2αds.

This yields that

E

(
sup

t0≤s≤t
|xn+1(s)− xn(s)|2

)
≤ 2(T − t0 + 4)K

∫ t

t0

E

(
sup

t0≤r≤s
|xn+1(r)− xn(r)|2α

)
ds.

Let z(t) = lim supn→∞E
(
supt0≤s≤t |xn+1(s)− xn(s)|2

)
, we get

z(t) ≤ 2(T − t0 + 4)K

∫ t

t0

zα(s)ds.

By stachurska’s inequality, we get z(t) = 0. This shows the sequence {xn(t), n ≥
0} is Cauchy sequence in L2. Hence, as n→∞, xn(t)→ x(t), that is E|xn(t)−
x(t)|2 → 0. Therefore, we obtain that x(t) ∈ M2([t0, t];R

d). Now to show that
x(t) satisfy (5)

E

∣∣∣∣∫ t

t0

[f(xn(s), s)− f(x(s), s)]ds+

∫ t

t0

[g(xn(s), s)− g(x(s), s)]dB(s)

∣∣∣∣2
≤ 2

[
(T − t0)E

∫ t

t0

|f(xn(s), s)− f(x(s), s)|2ds

+4E

∫ t

t0

|g(xn(s), s)− g(x(s), s)|2ds
]

≤ 2(T − t0 + 4)

∫ t

t0

E

(
sup

t0≤r≤s
|xn(r)− x(r)|2α

)
ds.

Noting that sequence {xn(t)} is uniformly converge on [t0, T ], it means that

E

(
sup

t0≤s≤t
|xn(s)− x(s)|2

)
→ 0
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as n→∞. Hence, taking limits on both sides in the Picard sequence, we obtain
that

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s). on t0 ≤ t ≤ T.

The above expression demonstrates that x(t) is a solution of equation (4). So
far, the existence of theorem in complete. �

Lemma 3.4. Assume that (H1) and (H2) hold. Let xn(t) be the Picard iterations
defined by (6). Then

E

(
sup

t0≤t≤T
|xn+1(t)− xn(t)|2

)
≤ (M(T − t0))

1−αn
1−α Cα

n
n∏
i=1

(1− α)α
n−i

(1− αi)αn−i
(8)

where M = 2K(T − t0 + 1).

Proof. We note that

|x1(t)− x0(t)|2 = |x1(t)− x0|2

≤ 2

∣∣∣∣∫ t

t0

f(x0, s)ds

∣∣∣∣2 + 2

∣∣∣∣∫ t

t0

g(x0, s)dB(s)

∣∣∣∣2 .
Taking the expectation on both sides, we derive that

E|x1(t)− x0|2 ≤ 2E

∣∣∣∣∫ t

t0

f(x0, s)ds

∣∣∣∣2 + 2E

∣∣∣∣∫ t

t0

g(x0, s)dB(s)

∣∣∣∣2 .
From Hölder inequality and condition (H1) one can show that

E|x1(t)− x0|2 ≤ 2(T − t0)E

∫ t

t0

|f(x0, s)|2ds+ 2E

∫ t

t0

|g(x0, s)|2dB(s)

≤ 2(T − t0)E

∫ t

t0

|f(x0, s)− f(0, s) + f(0, s)|2ds

+2E

∫ t

t0

|g(x0, s)− g(0, s) + g(0, s)|2ds

≤ 2(T − t0)E

∫ t

t0

2
(
|f(x0, s)− f(0, s)|2 + |f(0, s)|2

)
ds

+2E

∫ t

t0

2(
(
|g(x0, s)− g(0, s)|2 + |g(0, s)|2

)
ds

≤ 4(T − t0 + 1)E

∫ t

t0

(
K|x0|2α +K

)
ds ≤ C,

where C = 4(T − t0 + 1)(T − t0)
(
K +KE(|x0|2)

)
. That is

E|x1(t)− x0|2α ≤ (E|x1(t)− x0|)2α ≤ Cα,
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where 0 < α ≤ 1. By the same ways as above, we compute

E|x2(t)− x1(t)|2

≤ 2E

∣∣∣∣∫ t

t0

[f(x1(s), s)− f(x0, s)]ds

∣∣∣∣2 + 2E

∣∣∣∣∫ t

t0

[g(x1(s), s)− g(x0, s)]dB(s)

∣∣∣∣2
≤ 2(T − t0)E

∫ t

t0

|f(x1(s), s)− f(x0, s)|2ds+ 2E

∫ t

t0

|g(x1(s), s)− g(x0, s)|2ds

≤ 2(T − t0 + 1)E

∫ t

t0

K|x1(s)− x0|2αds

≤ 2(T − t0 + 1)K(t− t0)Cα

≤M(t− t0)Cα,

where M = 2K(T − t0 + 1). That is E|x2(t)− x1(t)|2α ≤Mα(t− t0)αCα
2

. Now
we claim that for all n ≥ 1,

E|xn+1(t)− xn(t)|2 ≤ (M(T − t0))
1−αn
1−α Cα

n
n∏
i=1

(1− α)α
n−i

(1− αi)αn−i
. (9)

When n = 0, 1 inequality (9) holds. We suppose that (9) holds for some n ≥ 1,
then, we derive that for n+ 1,

E|xn+2(t)− xn+1(t)|2

≤ 2(T − t0)E

∫ t

t0

K|xn+1(s)− xn(s)|2αds

≤ME

∫ t

t0

M
α(1−αn)

1−α (s− t0)
α(1−αn)

1−α Cα
n+1

n∏
i=1

(1− α)α
n−i+1

(1− αi)αn−i+1 ds

= (M(t− t0))
(1−αn+1)

1−α Cα
n+1

n+1∏
i=1

(1− α)α
n+1−i

(1− αi)αn+1−i

That is (9) holds for n+ 1. Hence, by induction, (8) hold for all n ≥ 1.

Theorem 3.5. Assume that (H1) and (H2) hold. Let x(t) be the unique solution
x(t) of equation (4) and xn(t) be the Picard iteration defined by (6). Then

E

(
sup

t0≤t≤T
|xn(t)− x(t)|2

)
≤ γ1 exp (2M(T − t0))

for all n ≥ 1, where C = 4(T − t0 + 1)(T − t0)(K +KE|x0|2) and M = 2K(T −
t0 + 1) and γ1 = 2 (M(t− t0))

1−αn
1−α Cα

n∏n
i=1

(1−α)α
n−i

(1−αi)αn−i
.

Proof. From the Picard iteration and unique solution, we have

xn(t)− x(t)

=

∫ t

t0

[f(xn−1(s), s)− f(x(s), s)]ds+

∫ t

t0

[g(xn−1(s), s)− g(x(s), s)]dB(s).
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Taking the expectation and by Hölder inequality and (H2) thus we have

E|xn(t)− x(t)|2

≤ 2(T − t0)E

∫ t

t0

|f(xn−1(s), s)− f(x(s), s)|2ds

+2E

∫ t

t0

|g(xn−1(s), s)− g(x(s), s)|2ds

≤ 2(T − t0)E

∫ t

t0

2
(
f(xn−1(s), s)− f(xn(s), s)|2

+|f(xn(s), s)− f(x(s), s)|2
)
ds

+2E

∫ t

t0

2
(
|g(xn−1(s), s)− g(xn(s), s)|2

+|g(xn(s), s)− g(x(s), s)|2
)
ds

≤ 4(T − t0 + 1)K

∫ t

t0

(
E|xn(s)− xn−1(s)|2α + E|xn(s)− x(s)|2α

)
ds.

Substituting (9) into this yields that

E

(
sup

t0≤s≤t
|xn(s)− x(s)|2

)

≤ 2M

∫ t

t0

M
α(1−αn−1)

1−α (s− t0)
α(1−αn−1)

1−α Cα
n
n−1∏
i=1

(1− α)α
n−i

(1− αi)αn−i
ds

+2M

∫ t

t0

E|xn(s)− x(s)|2αds

≤ 2 (M(T − t0))
1−αn
1−α Cα

n
n∏
i=1

(1− α)α
n−i

(1− αi)αn−i

+2M

∫ t

t0

E

(
sup

t0≤r≤s
|xn(s)− x(s)|2α

)
ds

where γ1 = 2 (M(T − t0))
1−αn
1−α Cα

n∏n
i=1

(1−α)α
n−i

(1−αi)αn−i
. By lemma 3.4, we have

E

(
sup

t0≤s≤t
|xn(s)− x(s)|2

)
≤ γ1 exp(2M(T − t0))

with γ1 ≥ 1. The proof is complete.

Theorem 3.6. Assume that
(i) (Linear growth condition) For all t ∈ [t0, T ] and x ∈ Rd, there exists a positive
number K such that

|f(x, t)|2 ∨ |g(x, t)|2 ≤ K
(
1 + |x|2

)
. (10)
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(ii) (Local Hölder condition) For each integer n ≥ 1, there exists a positive
constant number Kn such that for all t ∈ [t0, T ] and all x, y ∈ Rd, with |x|∨|y| ≤
n, it follows that

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ Kn|x− y|2α. (11)

Then there exists a unique solution x(t), moreover x(t) ∈M2([t0, T ];Rd).

Proof. For each n ≥ 1, define truncation functions fn and gn as follows,

fn(x, t) =

{
f(x, t), |x| ≤ n,
f
(
nx
|x| , t

)
, |x| > n,

gn(x, t) =

{
g(x, t), |x| ≤ n,
g
(
nx
|x| , t

)
, |x| > n,

then fn and gn satisfy condition (H1) and (H2). By Theorem 3.1, equation

xn(t) = x0 +

∫ t

t0

fn(xn(s), s)ds+

∫ t

t0

gn(xn(s), s)dB(s), t ∈ [t0, T ] (12)

has a unique solution xn(t), moreover xn(t) ∈ M2([t0, T ];Rd). Of course,
xn+1(t) is the unique solution of equation

xn+1(t) = x0 +

∫ t

t0

fn+1(xn+1(s), s)ds+

∫ t

t0

gn+1(xn+1(s), s)dB(s)

on t0 ≤ t ≤ T and xn+1(t) ∈M2([t0, T ];Rd). Define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |xn(t)| ≥ n}.

Taking the expectation, and by the Hölder inequality, it deduces that

E|xn+1(t)− xn(t)|2

≤ 2E

∣∣∣∣∫ t

t0

[fn+1(xn+1(s), s)− fn(xn(s), s)]ds

∣∣∣∣2
+2E

∣∣∣∣∫ t

t0

[gn+1(xn+1(s), s)− gn(xn(s), s)]dB(s)

∣∣∣∣2
≤ 2(T − t0)E

∫ t

t0

|fn+1(xn+1(s), s)− fn(xn(s), s)|2ds

+2E

∫ t

t0

|gn+1(xn+1(s), s)− gn(xn(s), s)|2ds

≤ 4(T − t0)E

∫ t

t0

[
|fn+1(xn+1(s), s)− fn+1(xn(s), s)|2

+ |fn+1(xn(s), s)− fn(xn(s), s)|2
]
ds
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+4E

∫ t

t0

[
|gn+1(xn+1(s), s)− gn+1(xn(s), s)|2

+ |gn+1(xn(s), s)− gn(xn(s), s)|2
]
ds.

For t0 ≤ t ≤ τn, we have known that

fn+1(xn(s), s) = fn(xn(s), s) = f(xn(s), s),

gn+1(xn(s), s) = gn(xn(s), s) = g(xn(s), s).

Moreover one then gets that

E

(
sup

t0≤s≤t
|xn+1(s)− xn(s)|2

)
≤ 4(T − t0)E

∫ t

t0

|fn+1(xn+1(s), s)− fn+1(xn(s), s)|2 ds

+4E

∫ t

t0

|gn+1(xn+1(s), s)− gn+1(xn(s), s)|2 ds

≤ 4(T − t0 + 1)E

∫ t

t0

Kn|xn+1(s)− xn(s)|2αds.

This yields that

E

(
sup

t0≤s≤t
|xn+1(s)− xn(s)|2

)
≤ 4(T − t0 + 1)Kn

∫ t

t0

E

(
sup

t0≤r≤s
|xn+1(r)− xn(r)|2α

)
ds.

Therefore, by the Stachurska’s inequality, one see that

E

(
sup

t0≤s≤t
|xn+1(s)− xn(s)|2

)
= 0, t0 ≤ t ≤ τn

this means that for t0 ≤ t ≤ τn, we always have

xn(t) = xn+1(t). (13)

It then deduces that τn is increasing, that is as n → ∞, τn → T a.s. By linear
growth condition, for almost all ω ∈ Ω, there exists an integer n0 = n0(ω) such
that τn = T as n ≥ n0. Now define x(t) by x(t) = xn0(t), t ∈ [t0, T ].

Next to verify that x(t) is the solution of (4). By (12), x(t∧ τn) = xn(t∧ τn),
and by (11), it follows that

x(t ∧ τn) = x0 +

∫ t∧τn

t0

fn(x(s), s)ds+

∫ t∧τn

t0

gn(x(s), s)dB(s)

= x0 +

∫ t∧τn

t0

f(x(s), s)ds+

∫ t∧τn

t0

g(x(s), s)dB(s).
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Letting n→∞ then yields

x(t ∧ T ) = x0 +

∫ t∧T

t0

f(x(s), s)ds+

∫ t∧T

t0

g(x(s), s)dB(s)

that is

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s).

Letting n→∞, we see that x(t) is the solution of (4), and x(t) ∈M2([t0, T ];Rd).
So far, the existence is complete. The uniqueness is obtained by stopping our
process. The proof is complete. �

Remark 3.1. Theorem 3.1 and Theorem 3.6 shown that the Picard iteration
sequence xn(t) converge to the unique solution x(t) of the SDEs (4). In Theorem
3.5 we gives an estimate on how fast converges is. This theorem shows that
one can use the Picard iteration procedure to obtain the approximate solution
of the systems give the estimate for the error of the approximation. Also it
clearly shall show that one can use the iteration sequence procedure to obtain
the approximate solutions to the SDEs.
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under the Hölder condition, Aust. J. Math. Anal. Appl. 16 (2019), no.2, Article 4, 10pp.

7. Y.-H. Kim, An existence of the solution to neutral stochastic functional differential equa-
tions under special conditions, J. Appl. Math. Inform. 37 (2019), no. 1-2, 53-63.

8. F.Y. Wei, K. Wang, The existence and uniqueness of the solution for stochastic functional

equations with infinite delay , J. Math. Anal. Appl. 331 (2007) 516-531.
9. R. Yong, L. Shiping, X. Ningmao, Remarks on the existence and uniqueness of the solutions

to stochastic functional differential equations with infinity delay , J. Comp. Appl. Math.
220 (2008) 364-372.

Mun-Jin Bae received M.Sc. from Changwon National University. His research interests

are probability theory and stochastic analysis.

Department of Mathematics, Changwon National University, Changwon, Gyeongsangnam-

do 51140, Korea.
e-mail:answlsl05@naver.com



506 M.J. Bae, C.H. Park, and Y.H. Kim

Chan-Ho Park received M.Sc. from Yonsei University and Ph.D at Changwon National

University. His research interests include probability theory and Stochastic Analysis.

Department of Mathematics, Changwon National University, Changwon, Gyeongsangnam-
do 51140, Korea.

e-mail:nemo-kid@hanmail.net

Young-Ho Kim received M.Sc. from Chung-Ang University and Ph.D at Chung-Ang
University. Since 1997 he has been at Changwon National University. His research interests

include probability theory and Stochastic Analysis.

Department of Mathematics, Changwon National University, Changwon, Gyeongsangnam-

do 51140, Korea.
e-mail: yhkim@changwon.ac.kr




