• Title/Summary/Keyword: $H^{+}$ pump

Search Result 775, Processing Time 0.026 seconds

Study on the Silicon Pump and Control System for TFT-LCD Manufacturing Process (TFT-LCD 생산공정을 위한 실리콘 펌프 및 제어시스템에 관한 연구)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3618-3622
    • /
    • 2012
  • In this study, the yield of the modules in LCD production lines, improving current TFT-LCD production process is essential for high-pressure silicone injection equipment, and precision control system was developed. This full-scale production of the future through the development of next-generation display production line is being prepared, being transferred to China in LCD production facilities can make the most of efficient equipment. Therefore, minimize the cost of new investment and help create the maximum effect to control the detailed behavior of the sequence H/W and S/W system was installed on the production line. In addition, Fast-evacuating the structure proposed for the Vacuum pump, Pump control circuit design and experimental results has been completed.

Commissioning result of the KSTAR in-vessel cryo-pump

  • Chang, Y.B.;Lee, H.J.;Park, Y.M.;Lee, Y.J.;Kwag, S.W.;Song, N.H.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, N.W.;Yang, H.L.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • KSTAR in-vessel cryo-pump has been installed in the vacuum vessel top and bottom side with up-down symmetry for the better plasma density control in the D-shape H-mode. The cryogenic helium lines of the in-vessel cryo-pump are located at the vertical positions from the vacuum vessel torus center 2,000 mm. The inductive electrical potential has been optimized to reduce risk of electrical breakdown during plasma disruption. In-vessel cryo-pump consists of three parts of coaxial circular shape components; cryo-panel, thermal shield and particle shield. The cryo-panel is cooled down to below 4.5 K. The cryo-panel and thermal shields were made by Inconel 625 tube for higher mechanical strength. The thermal shields and their cooling tubes were annealed in air environment to improve the thermal radiation emissivity on the surface. Surface of cryo-panel was electro-polished to minimize the thermal radiation heat load. The in-vessel cryo-pump was pre-assembled on a test bed in 180 degree segment base. The leak test was carried out after the thermal shock between room temperature to $LN_2$ one before installing them into vacuum vessel. Two segments were welded together in the vacuum vessel and final leak test was performed after the thermal shock. Commissioning of the in-vessel cryo-pump was carried out using a temporary liquid helium supply system.

A study on the comparison of the performance of a heat pump system with air and water heat sources (공기열원 및 수열원을 이용한 열펌프 시스템의 성능특성에 관한 연구)

  • Ko, Won-Bin;Park, Youn-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.563-568
    • /
    • 2016
  • In this study, experiments were conducted to evaluate the performance of a heat pump system. A heat pump system with an air as heat source is adapted as reference. The developed system uses a plate heat exchanger an evaporator to absorb heat from a stack of fuel cell driven electric vehicles. Hence, the system functions as a water source heat pump system. The results indicated that the; power consumption increased with the rotational speed of the compressor. A system performance($COP_h$) of 2.03 at an electronic expansion valve(EEV) openings of 25% and a compressor speed of 1200 rpm was observed in the reference system. However, at the same compressor speed, the $COP_h$ of the water source heat pump system corresponded to 9.42 at an EEV openings of 75%. It was found that the water source heat pump system exhibited the highest performance at a water temperature of $50^{\circ}C$.

Performance of Heat Pump Water Heater with Dual Condenser (2단 응축 히트펌프 온수시스템의 사이클 해석 및 성능분석)

  • Ryou, Y.S.;Kim, Y.J.;Kang, G.C.;Paek, Y.;Yun, J.H.;Kang, Y.G.;Lee, H.M.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.423-429
    • /
    • 2006
  • The heat pump water heater developed in this research consisted of one evaporator, one compressor, 1st condenser, 2nd condenser, one expansion valve, one water tank, one recirculation circuit and etc. The performance of heat pump water heater was tested and analyzed. The quantities of output water changed linearly from 2380 to $660{\ell}/h$, and the output water temperature changed curvedly from 29.9 to $44.5^{\circ}C$ when the opening rate of recirculation valve changed from 0 to 100%. The COP of heat pump water heater increased from 3.0 to 3.8 when the quantities of output water changed from 660 to $2380{\ell}/h$. When the temperature distributions of water tank were measured during 50 minutes after turning on the heat pump, the temperature stratification by the level appeared apparently. When the inlet water temperature changed from 30 to$50^{\circ}C$, the output energy of heat pump hardly changed. The surface area of double pipe heat exchanger changed from 0.429 to $6.254m^2$ when the compressor capacity increased from 1.0 to 50.0 PS.

Experimental Study on Heating Performance by Operation Combination of Heat Pump with 3 Indoor-Units (3실 열펌프의 운전조합에 대한 난방성능 실험연구)

  • Kim, Ju-Hyung;Kim, Ki-Young;Kwon, Young-Chul;Park, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4197-4203
    • /
    • 2013
  • In order to investigate the heating performance of multi-heat pump applying an inverter compressor, the experiment on heat pump with 3 indoor units was performed under the heating standard and heating low-temperature conditions. The performance data of heat pump with 3 indoor units were measured by the multi-psychrometric calorimeter. The operation characteristics and the behavior of the refrigerant cycle of the heat pump with 3 indoor units were understood from the heating capacity, heating COP, and P-h diagram by indoor-unit combination. The present experimental results show that the operating load and performance of the multi-heat pump depends on the indoor-unit combination. The heating capacity and heating COP of the low temperature condition were smaller than those of the standard one. Also the refrigerant cycles on indoor-unit combination were analyzed by using P-h diagram.

NUMERICAL ANALYSIS OF THREE-DIMENSIONAL FLOW IN A MIXED-FLOW PUMP (사류펌프 내 삼차원 유동의 수치해석)

  • Ahn, H.J.;Kim, J.H.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.223-226
    • /
    • 2009
  • This paper presents three-dimensional flow analysis for a mixed-flow pump which consists of a rotor and a stator. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved by the commercial CFD code CFX 11.0. Structured grid system is constructed in the computational domain, which has O-type grids near the blade surfaces and H-type grids in other regions. Validation of the numerical results was performed with experimental data for head coefficients and hydraulic efficiencies at different flow coefficients. This paper shows that the pump characteristics can be predicted effectively by numerical analysis.

  • PDF

Simulation of the Second Kind LiBr - H2O Absorption Heat Pump (2종 LiBr - H2O 흡수식 열펌프의 시뮬레이션)

  • Huh, J.Y.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.146-161
    • /
    • 1989
  • The second kind LiBr-$H_2O$ absorption heat pump system was simulated and the performances of it were predicted. The elements of heat pump system, evaporator, absorber and generator were analysed by solving the energy balance equations and concentration equations which describe the reactions between working fluids. The results show that the temperature gain of absorber is affected considerably by the operating conditions of heat pump system, on the other hand, COP is little affected by them.

  • PDF

Measurement of Flow Field in a Domestic Hot-Water Pump by PIV (PIV에 의한 가정용 온수펌프의 유동장 계측)

  • Lee, H.;Im, Y. C.;Kim, J. H.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.264-271
    • /
    • 1999
  • The present experimental study is aimed to investigate the flow characteristics of the high-speed flow field within hot-water pump by PIV(Particle Image Velocimetry). As multi-point simultaneous velocity acquisition, 2-D PIV system based upon the two-frame gray-level cross correlation method is adopted using PC frame-grabber and simple video system. Gated image intensifier CCD Camera to cope with illumination problem is arranged for accurate PIV measurement of high-speed complex flow. The velocity vector distribution, velocity profile, and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a pump.

  • PDF

Characteristic Evaluation of Vacuum Chamber for EBM System (전자빔 가공시스템용 진공환경의 성능평가)

  • Kang J.H.;Lee C.H.;Choi J.H.;Lim Y.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.934-937
    • /
    • 2005
  • It is not efficient and scarcely out of the question to use commercial expensive electron beam lithography system widely used for semiconductor fabrication process for the manufacturing application field of various devices in the small business scope. Then scanning electron microscope based electron beam machining system is maybe regarded as a powerful model can be used for it simply. To get a complete suite of thus proper system, proper chamber with high vacuum condition is necessarily required more than anything else to modify scanning electron microscope. In this study, special chamber unit using rotary pump and diffusion pump to obtain high vacuum degree was designed and manufactured and various evaluation tests fur recognize the vacuum characteristic were accomplished.

  • PDF

A Study on the Thermal Pump of the Hot Water Boiler (온수 보일러용 열구동 펌프에 관한 연구)

  • Yeom, Han-Gil;Kim, Uk-Joong;Kim, Chang-Ju
    • 연구논문집
    • /
    • s.30
    • /
    • pp.15-23
    • /
    • 2000
  • In this study, develop the thermal pump using water evaporation and condensation. Vapor from heating room moves up to pumping room and press the water of pumping room. Consequently water is pumped out to water tank. Then hot vapor direct contact with cold water in condensing room after pumping process. At this time, pressure of condensing room is down to-5kPa and suck in water of tank. This pump executes self ping and good durability because of no mechanical moving parts. Thermal pump is pumped cyclic so that, this pump is not used single. Therefore thermal pump of hot water boiler used to multi-stage for stable pumping rate. As the result of performance test, the developed thermal pump proves pumping action of water evaporation/condensation. And total volume flow rate is 500liter during one hour. If three thermal pump is installed parallel, this pump can use to the hot water boiler in the 300,000kcal/h class.

  • PDF