• Title/Summary/Keyword: $G_2$-M transition

Search Result 257, Processing Time 0.032 seconds

Synthesis of Multi-component Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization

  • Park, Yeong-Uk;Kim, Jong-Sun;Gwon, Hyeok-Jo;Seo, Dong-Hwa;Kim, Seong-Uk;Hong, Ji-Hyeon;Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.37.1-37.1
    • /
    • 2010
  • The multi-component olivine cathode material, $LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$, was prepared via a novel coprecipitation method of the mixed transition metal oxalate, $Mn_{1/3}Fe_{1/3}Co_{1/3}(C_2O_4){\cdot}2H_2O$. The stoichiometric ratio and distribution of transition metals in the oxalate, therefore, in the olivine product, was affected sensitively by the environments in the coprecipitation process, while they are the important factors in determining the electrochemical property of electrode materials with multiple transition metals. The effect of the pH, atmosphere, temperature, and aging time was investigated thoroughly with respect to the atomic ratio of transition metals, phase purity, and morphology of the mixed transition metal oxalate. The electrochemical activity of each transition metal in the olivine synthesized through this method clearly was enhanced as indicated in the cyclic voltammetry (CV) and galvanostatic charge/discharge measurement. Three distinctive contributions from Mn, Fe, and Co redox couples were detected reversibly in multiple charge and discharge processes. The first discharge capacity at the C/5 rate was $140.5\;mAh\;g^{-1}$ with good cycle retention. The rate capability test showed that the high capacity still is retained even at the 4C and 6C rates with 102 and $81\;mAh\;g^{-1}$, respectively.

  • PDF

The Magnetoresistance in Iron-based Superconductors

  • Lv, B.;Xie, R.B.;Liu, S.L.;Wu, G.J.;Shao, H.M.;Wu, X.S.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.192-195
    • /
    • 2011
  • The phase transition of vortex matter from solid to liquid was studied in iron-based superconductors. Based on the traditional vortex glass theory, we have examined the magnetoresistivity data of iron-based superconductors using our extended thermal activation model: $\rho(B,T)=\rho((T-T_g(B))/(T_c(0)-T_g(B)))^{v(z-1)}$. We predict that the magnetic field-dependent area S + $S_0$ which integrates $\rho$ with T is proportional to $B^{\beta}$, where ${\beta}$ is the vortex glass transition exponent. From our calculation, the vortex glass transition exponent is 0.33, close to the exponent of area $S_0$ + S is 0.31 in $SmO_{0.9}F_{0.1}FeAs$; the exponent of area S is 0.63, which is close to the irreversibility line exponent 2/3. Both of the results show the validity of our model. In addition, our model is shown to be effective in describing irreversibility behavior in layered superconductors.

CONDENSATION IN DENSITY DEPENDENT ZERO RANGE PROCESSES

  • Jeon, Intae
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.267-278
    • /
    • 2013
  • We consider zero range processes with density dependent jump rates g given by $g=g(n,k)=g_1(n)g_2(k/n)$ with $g_1(x)=x^{-\alpha}$ and $$g_2(x)=\{^{x^{-\alpha}\;if\;a&lt;x}_{Mx^{-\alpha}\;if\;x{\leq}a}$$. (0.1) In this case, with 1/2 < a < 1 and ${\alpha}$ > 0, we show that non-complete condensation occurs with maximum cluster size an. More precisely, for any ${\epsilon}$ > 0, there exists $M^*$ > 0 such that, for any 0 < M ${\leq}M^*$, the maximum cluster size is between (a - ${\epsilon}$)n and (a + ${\epsilon}$)n for large n. This provides a simple example of non-complete condensation under perturbation of rates which are deep in the range of perfect condensation (e.g. ${\alpha}$ >> 1) and supports the instability of the condensation transition.

Activated Physical Properties at Air-Polymer Interface

  • Kajiyama, Tisato
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.109-113
    • /
    • 2007
  • The surface molecular motion of monodisperse polystyrene (PS) films was examined using scanning vis-coelasticity microscopy (SVM) in conjunction with lateral force microscopy (LFM). The dynamic storage modulus, E', and loss tangent, $tan\delta$, at a PS film surface with number-average molecular weights, $M_n$, smaller than 30 k were found to be smaller and larger than those for the bulk sample, even at room temperature, meaning that the PS surface is in a glass-rubber transition or fully rubbery sate at this temperature when the $M_n$ is small. In order to quantitatively elucidate the dynamics of the molecular motion at the PS surface, SVM and LFM measurements were performed at various temperatures. The glass transition temperature, $T_g$, at the surface was found to be markedly lower than the bulk $T_g$, and this discrepancy between the surface and bulk became larger with decreasing $M_n$. Such an intensive activation of the thermal molecular motion at the PS surfaces can be explained in terms of an excess free volume in the vicinity of the film surface induced by the preferential segregation of the chain end groups.

Synthesis of Mesoporous Transition Metal Carbon Using the Mesoporous Silica (메조포러스실리카를 이용한 메조포러스 전이금속체 합성)

  • Han, Seung-Dong;Jeong, Ui-Min;Lee, Joo-Bo;Peng, Mei Mei;Kim, Dae-Kyung;Jang, Hyun-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1915-1922
    • /
    • 2012
  • In this study, synthesis of mesoporous silica such as, SBA-15, MCM-41, MCM-48, KIT-6 according to various experimental conditions. The CMK(Carbon Mesoporous Korea) was synthsized by various mesoporous silica. Finally, the mesoporous transition metal structure synthesized using CMK structure. Nitrogen adsorption/ desorption, SEM, low angle X-ray diffraction were carried for analysis of each sample. The optimum synthesis condition of mesoporous transition metal structure derived from characteristic analysis. The SBA-15 is best precursor for synthesis of mesoporous transition metal structure. The surface area of copper mesorporous structure from CMK(SBA-15) is $225m^2/g$, pore diameter is 2.91nm by BET analysis.

Short-range magnetic order in La1-xBaxCoO3 cobaltites

  • Long, Phan The;Petrov, Dimitar N.;Cwik, J.;Dang, N.T.;Dongquoc, Viet
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1248-1254
    • /
    • 2018
  • Magnetization versus temperature and magnetic-field measurements, M(T, $H_a$), have been carried out to study the magnetic and critical properties of polycrystalline $La_{1-x}Ba_xCoO_3$ (x = 0.3 and 0.5) cobaltites. These compounds with the density of ${\sim}6.2g/cm^3$ crystallized in the $R{\bar{3}}c$ rhombohedral and $Pm{\bar{3}}m$ cubic structures, respectively. With an applied field $H_a=200Oe$, M(T) data have revealed that the samples with x = 0.3 and 0.5 exhibit the ferromagnetic-paramagnetic (FM-PM) phase transition at the Curie temperature points $T_C=202$ and 157 K, respectively. At 4.2 K, the saturation magnetization ($M_{sat}$) decreases from 35.9 emu/g for x = 0.3-26.1 emu/g for x = 0.5. Particularly, the critical-behavior analyses in the vicinity of $T_C$ reveal all samples undergoing a second-order phase transition, with critical exponent values (${\beta}=0.328$ and ${\gamma}=1.251$ for x = 0.3, and ${\beta}=0.331$ and ${\gamma}=1.246$ for x = 0.5) close to those expected for the 3D Ising model. This proves short-range magnetic order existing in $La_{1-x}Ba_xCoO_3$. We believe that magnetic inhomogeneities due to the mixture of hole-rich FM regions (confined in the trivalent-cobalt hole-poor anti-FM matrix) and uniaxial anisotropy prevent long-range order in $La_{1-x}Ba_xCoO_3$.

Anti-Oxidant and Anti-Adipogenic Effects of Ethanol Extracts from Wheat Germ and Wheat Germ Fermented with Aspergillus oryzae

  • Park, Euna;Kim, Hae Ok;Kim, Gyo-Nam;Song, Ji-Hye
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • Most of the wheat germ in cereal grains is removed during the milling process. Various physiological effects have been reported for bioactive substances in wheat germ such as phenolic acids and flavonoids. In this study, the antioxidant and anti-adipogenic effects of ethanol extracts from wheat germ (WGE) and wheat germ fermented with Aspergillus oryzae (F-WGE) were investigated in HepG2 and 3T3-L1 cells. The anti-oxidant activity of F-WGE was demonstrated by a dose-dependent increase in the enhanced scavenging capacity of hydroxyl radicals and $Cu^{2+}$-chelating activity compared to WGE. WGE and F-WGE treatment at doses between 10 and $400{\mu}g/mL$ did not affect the viability of HepG2 and 3T3-L1 cells. Intracellular ROS levels from $Cu^{2+}$-induced oxidative stress were significantly decreased by F-WGE treatment in HepG2 cells compared to WGE. Lipid accumulation was increased in 3T3-L1 adipocytes by $100{\mu}M$ $Fe^{2+}$ treatment, but the accumulation was strongly inhibited by $100{\mu}g/mL$ of WGE and F-WGE treatment. These results suggest that changes in bioactive substances during the fermentation of wheat germ can potentiate scavenging activities against transition metal-induced oxidative stress and lipid accumulation in 3T3-L1 adipocytes. Therefore, we propose that F-WGE is a novel food materials and provided scientific evidences for its efficacy in the development of functional foods.

Hydrogen-Atom Abstraction Reaction of CF3CH2OCF3 by Hydroxyl Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Rao, Pradeep Kumar
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3718-3722
    • /
    • 2010
  • Theoretical investigations are carried out on the title reaction by means of ab-initio and DFT methods. The optimized geometries, frequencies and minimum energy path are obtained at UB3LYP/6-311G(d,p) level. Single point energy calculations are performed at MP2 and MP4 levels of theory. Energetics are further refined by calculating the energy of the species with a modified Gaussian-2 method, G2M(CC,MP2). The rate constant of the reaction is calculated using Canonical Transition State Theory (CTST) utilizing the ab-initio data obtained during the present study and is found to be $5.47{\times}10^{-12}\;cm^3\;molecule^{-1}s^{-1}$ at 298 K and 1 atm.

Oct4 resetting by Aurkb–PP1 cell cycle axis determines the identity of mouse embryonic stem cells

  • Shin, Jihoon;Youn, Hong-Duk
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.527-528
    • /
    • 2016
  • In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs.