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ABSTRACT. We consider zero range processes with density dependent jump rates g given by
g = g(n, k) = g1(n)g2(k/n) with g1(x) = x−α and

g2(x) =

{
x−α if a < x

Mx−α if x ≤ a.
(0.1)

In this case, with 1/2 < a < 1 and α > 0, we show that non-complete condensation occurs
with maximum cluster size an. More precisely, for any ε > 0, there exists M∗ > 0 such that,
for any 0 < M ≤ M∗, the maximum cluster size is between (a − ε)n and (a + ε)n for large
n. This provides a simple example of non-complete condensation under perturbation of rates
which are deep in the range of perfect condensation (e.g. α >> 1) and supports the instability
of the condensation transition.

1. INTRODUCTION

Suppose there are m indistinguishable particles distributed over n sites on one dimensional
lattice, and suppose a nondecreasing function g defined on nonnegative integers and a transition
matrix {Pij}ni,j=1 are given. We say there is a k-cluster at site i, if k particles occupy site i.
The zero range process introduced by Spitzer in 1970 describes the following dynamics: A
k-cluster at site i waits an exponential amount of time with parameter g(k), picks site j with
probability Pij , and gives one particle to site j [13], [14].

If m and n are fixed, and {Pij}ni,j=1 is irreducible, then there is a unique invariant measure of
the zero range process which is independent of the transition probability {Pij}ni,j=1. Let Z .

=

(Z1, Z2, · · · , Zn) denote the steady state of a zero range process corresponding the invariant
measure, and let Z∗n be the size of the maximum cluster,

Z∗n = max
1≤i≤n

Zi. (1.1)

If g is decreasing, larger clusters wait more time than smaller ones to give a particle to other
sites, which means that large clusters rather gain particles from small clusters and consequently
there are growing phenomena. One can guess that for rapidly decreasing rate functions the
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maximum cluster draws all particles. As a matter of fact, the size of the maximum cluster
depends on how fast the rate functions decrease.

Recently, it has a great attention after the discovery of existence of condensation transition,
the phenomenon that positive fraction of all particles form a giant cluster (see Definition 1.1).
Considering the jump rates given by

g(k) = 1 +
β

k
, β > 0, (1.2)

Jeon et al. [12] and Evans [4] independently discovered the occurrence of non-complete con-
densation transition in zero range processes.
Condensation is an important phenomenon which can be applied to various areas. In mathemat-
ics, Armendáriz and Loulakis, and Beltran and Landim studied several aspects of condensation
recently among others [1], [2]. It can be also applied to the areas such as sandpile dynamics,
interface growth, granular systems, network flows, transport processes, and macroeconomics.
For the significance of the condensation transition and applications, see the survey paper by
Evans and Hanney [5].

To study the condensation phenomena in detail, let us adopt the following definition from
[10].

Definition 1.1. (1) A condensation event occurs if Z∗n/n converges to a constant c, 0 <
c ≤ 1, in probability as n tends to infinity.

(2) A complete condensation event occurs if Z∗n/n converges to 1 in probability as n tends
to infinity.

(3) A perfect condensation event occurs if n−Z∗n converges to 0 in probability as n tends
to infinity.

Note that “condensation” implies that the maximum cluster size is a positive fraction of the
number of total particles, “complete condensation” means that the maximum cluster size is of
order n, and “perfect condensation” indicates that all particles coalesce into a single cluster.
The condensation transition is conceptually similar to the emergence of a giant component in
a random graph and gelation for coagulation fragmentation equations [8], [12].

In [12], Jeon et al. also considered the cases that the rate function given by

g(k) = k−α, −∞ < α < ∞, (1.3)

and showed that if the transition matrix {Pij}ni,j=1 is symmetric and irreducible, then two types
of transitions occur. Assume that m = n, i.e., the density ρ = m/n = 1.

Theorem 1.2. (Jeon, March, Pittel [12])
(a) If α > 1, then n− Z∗n converges to 0 in probability.
(b) If α = 1, then n − Z∗n weakly converges to a Poisson distribution with the parameter

equal to 1.
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(c) If 0 < α < 1, then (n− Z∗n)/n1−α converges to 1 in probability.
(d) If α = 0, then Z∗n/ logn converges to log 2 in probability.
(e) If α < 0, then Z∗n log(log n)/ logn converges to −α−1 in probability.

In the above Theorem, perfect condensation occurs for the case (a) and non-perfect complete
condensation occurs for the case (b) and (c).

In some models, the dynamics can be described by jump rates expressed by

g = g(k, n) = g1(n)g2(k/n) (1.4)

where g1 represents the scaling part which depends only on the total number of particles, and
g2 is a function of the density k/n [5], [6]. Note that in this model, the invariant measure
doesn’t depend on g1. More recently, Jeon considered a case in which the jump rate is given by

g(k) = g(k, n) =

{
M/kα if (1/2)2l < k/n ≤ (1/2)2l+1

1/kα if (1/2)2l+1 < k/n ≤ (1/2)2l+2,
(1.5)

for l = 0, 1, · · · with α > 0, which is a density-dependent dyadic periodic perturbation of (1.3)
[9]. In this case Jeon showed that non-complete condensation occurs. This implies that even
the rates are deep in the range of perfect condensation(e.g. α >> 1), a small perturbation can
cause a significant amount of reduction of the maximum cluster size and showed the instability
of the condensation phenomena. (For the instability of random perturbation, see [3], [7].)

In this paper, we derive a much simpler example of rate functions which exhibits similar
characteristics. Indeed, we perturb (1.3) to consider the case that

g(k) =

{
k−α if a < k/n

Mk−α if k/n ≤ a.
(1.6)

Under this g with α > 0 and 1/2 < a < 1, we are able to show that non-complete condensation
occurs with maximum cluster size close to an, in the sense that for any ε > 0, there exists
M∗ > 0 in (1.6) such that, for any 0 < M ≤ M∗ the maximum cluster size is between
(a−ε)n and (a+ε)n for large n. (See Theorem 3.5 and 3.6.) Our result provides another simple
example of non-complete condensation under perturbation, even the rates are deep in the range
of perfect condensation, which also supports the instability of the condensation phenomena. In
this paper, we considered only the case 1/2 < a < 1. We believe the situation is true for all
0 < a < 1, which we leave as an open problem.

This study is organized as follows: Section 2 briefly introduces the zero range processes and
invariant measures; and Section 3 presents proofs of the main theorems.
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2. ZERO RANGE PROCESS

A zero range process is a stochastic process defined on Ω∗n = {0, 1, 2, . . . }Nn , where Nn =
{1, 2, · · · , n}. Any η

.
= (η(1), η(2), · · · , η(n)) ∈ Ω∗n represents the distribution of particles

along the n sites, and this suggests that there is a η(i)-cluster at site i. Suppose there is a
jump rate, a nonnegative function g defined on nonnegative integers. Assume further that an
irreducible stochastic matrix {Pij}1≤i,j≤n satisfying

∑n
j=1 Pij = 1 for all i is given. Then

zero range process is the stochastic process with the following generator. For η ∈ Ω∗n,

(Lnf)(η) =
n∑

i=1

n∑
j=1

Pijg(η(i)){f(ηi,j)− f(η)},

where f is any bounded function on Ω∗n, and ηi,j is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if η(i) = 0, then ηi,j = η

if η(i) 
= 0, then ηi,j(k) =

⎛⎜⎝ η(i)− 1 if k = i

η(j) + 1 if k = j

η(k) otherwise.

Suppose its initial configuration is η = (η(1), η(2), · · · , η(n)). Then η(i)-cluster waits for
an exponential amount of time with parameter g(η(i)), picks site j with probability Pij , and
allocate one particle to j site. As a result, η(i) decreases to η(i) − 1, and η(j) increases to
η(j) + 1. Since these dynamics do not permit the creation or annihilation of particles, the total
number of particles are preserved. Let

Ωm
n = {η ∈ Ω∗n :

n∑
i=1

η(i) = m}, 1 ≤ m < ∞, (2.1)

then there is a unique invariant measure, say νmn , on Ωm
n , and Spitzer showed that the invariant

measure can be expressed by a simple factorized form [13], [14].

Lemma 2.1. (Spitzer [14]) For any jump rate g, and for any η ∈ Ωm
n , let

μm
n (η) =

n∏
i=1

{g!(η(i))}−1, (2.2)

where g!(l) = g(l)g(l − 1)g(l − 2) · · · g(1), with the convention g!(0) = 1. Let

νmn (η) =
1

Γ
μm
n (η), (2.3)

where Γ is the normalizing constant given by Γ = μm
n (Ωm

n ) =
∑

η∈Ωm
n
μm
n (η). Then νmn is the

invariant measure corresponding to g.
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3. MAIN THEOREMS AND PROOFS

In this section, if there are no confusions or no differences in the estimates, we will drop the

largest integer function [·] from the notation. For example, we mean (εn)! by [εn]! and
(
n
εn

)
=(

n
[εn]

)
. Furthermore, if n = m, to simplify the notation, we will indicate Ωm

n , μm
n , νmn as

Ωn, μn, νn, respectively.

Now, let us consider the density dependent jump rate g = g(k, n) = g1(n)g2(k/n) which is
given by g1(x) = 1/xα and g2 by

g2(x) =

⎧⎪⎨⎪⎩
1

xα
, if x > a

M

xα
, if x/n ≤ a,

(3.1)

for a, 0 < a < 1. Then g becomes (1.6), and it is a simple perturbation of (1.3). Note that, in
(1.3), if α > 1 then perfect condensation occurs from Theorem 1.2.

Before we state and prove the main theorems, let us introduce some useful Lemmas which can
be found in [9], [10]. Let Z .

= (Z1, Z2, · · · , Zn) be the steady state of a zero range process
corresponding the invariant measure, and let Z∗n be the size of the maximum cluster, that is,

Z∗n = max
1≤i≤n

Zi. (3.2)

Let |Ωm
n | be the number of elements in Ωm

n . Since Ωm
n is the set of nonnegative integers

satisfying the equation
x1 + x2 + · · ·+ xn = m,

elementary combinatorics provides

|Ωm
n | =

(
n+m− 1

n− 1

)
. (3.3)

We also have the next lemma from elementary combinatorics.

Lemma 3.1. For fixed l,
(
n
l

)
is an increasing function of n. Moreover, for fixed n, the function

is increasing for l < n
2 and decreasing for l > n

2 .

Let
Ak = {η ∈ Ωm

n : max
1≤i≤n

η(i) ≤ k} (3.4)

be the set of configurations of which the maximum cluster size is less than or equal to k. The
next lemma describes a comparison of the invariant measures of different configurations.
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Lemma 3.2. Let m = lk+r, 0 ≤ r < k, and let η∗ = (k, k, · · · , k, r, 0, 0, · · · , 0) ∈ Ak, where
the k’s are repeated l times. Let g be a rate function with corresponding invariant measure νmn
on Ωm

n . Then for any η ∈ Ak:
(a) νmn (η∗) ≥ νmn (η), if g is decreasing.
(b) νmn (η∗) ≤ νmn (η), if g is increasing.

Proof. See Lemma 1.3 in [12]. �
Let μm

n be the unnormalized zero range invariant measure on Ωm
n corresponding to g in (3.1).

Then

μm
n (η) =

n∏
i=1

{g!(η(i))}−1 =
n∏

i=1

(η(i)!)α

M l
, (3.5)

for some l ∈ {0, 1, 2, · · · }. In this expression, since l depends on η, we can define a function
φ : Ωm

n → {0, 1, 2, · · · }, which counts the number of Ms contained in μm
n (η) as

φ(η) = l. (3.6)

From now on, we assume m = n so that the density ρ = m/n = 1.

Proposition 3.3. Suppose that g is given by (3.1). For a ≥ 1/2,

νn(Aan
4
) → 0, as n → ∞, (3.7)

that is, the size of the largest cluster is greater than an/4 in probability.

Proof. Consider η0 = (an, b, 0, · · · , 0) ∈ Ωn with an+ b = n (recall, in this notation ‘an’ is
actually ‘[an]’). From Lemma 3.2, μn(η0) ≥ μn(η), for any η ∈ Aan, since φ(η) = n for all
η ∈ Aan, and φ(η0) = n. Therefore, without loss of generality, we may assume M = 1.

Let η1 = (an/4, an/4, · · · , an/4, d, 0, · · · , 0) with suitable d (d ≤ an/4) which makes
η1 ∈ Ωn. Similarly, we see that μn(η1) ≥ μn(η) for any η ∈ Aan/4. Note that the number of

elements of the set Aan/4 is bounded by that of Ωn, which is bounded by
(
2n− 1
n− 1

)
from (3.3)

and
(
2n− 1
n− 1

)
is bounded by

(
2n
n

)
. Therefore,

νn(Aan/4) =
μn(Aan/4)

μn(Ωn)
(3.8)

≤
μn(η1)

(
2n
n

)
μn(η0)

, (3.9)

Since φ(η0) = φ(η1) and from Stirling’s formula, we have

νn(Aan/4) ≤ P (n)(an/4)αn

(an)αn
4n (3.10)

≤ P (n)(
4

4α
)n. (3.11)
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Here, the degree of the polynomial P (n) is independent of n. Now, the final term tends to 0 as
n tends to infinity, since α > 1. �

The next Proposition proves that the probability that the maximum cluster size is between
an/4 and (a− ε)n tends to 0 as n tends to infinity.

Proposition 3.4. Suppose that g is given by (3.1). For any small ε > 0, and a > 1
2 ,

νn(A(a−ε)n \Aan
4
) → 0, as n → ∞. (3.12)

Proof. For A(a−ε)n, without loss of generality, we may assume M = 1, since φ(η) = n for all
η ∈ A(a−ε)n. Let

Bk = Ak \Ak−1 (3.13)

be the set of configurations of which the maximum cluster size is exactly k. For η ∈ Ωn, define
γ by

γ(η) = |{i : η(i) ≥ 1}|, (3.14)

where |A| denotes the number of elements in A. Note that γ indicates the total number of
occupied sites. Let Ck,l be the set of configurations in Bk with exactly l occupied sites. That
is,

Ck,l = {η ∈ Bk : γ(η) = l}. (3.15)

For any η ∈ Bk, it contains a k cluster, and there are n− k remaining particles. Therefore, for
k < n, Bk can be expressed by

Bk =

n−k+1⋃
l=1

Ck,l.

Note that there are
(
n
l

)
ways of choosing l occupied sites, there are l ways of locating the

largest k-cluster on the l sites. Since the number of ways locating the remaining n−k particles

on the l − 1 sites without empty site is bounded by P (n)

(
n
l

)
for some polynomial P (n),

|Ck,l| is bounded by P (n)

(
n
l

)(
n
l

)
.

Now, choose η0 = (an, b, 0, 0, · · · , 0) with an + b = n and b < an. For k, an/4 ≤ k ≤
(a− ε)n,

(1) If k ≤ b, then choose

η1 = (k, an− k, b, 0, · · · , 0) ∈ Ωn,

then, from Lemma 3.2, μn(η1) ≥ μn(η) for any η ∈ Ck,l. Moreover,
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μn(η1)

μn(η0)
=

(k!(an− k)!

(an)!

)α (3.16)

≤ P (n)(kk(an− k)an−k)α

(an)αan
(3.17)

= P (n)
((k/n)k/n(a− k/n)a−k/n

(a)a
)αn

. (3.18)

Let
f(x) = xx(a− x)a−x, (3.19)

and let g(x) = ln(f(x)), then

g′(x) = lnx+ 1− ln(a− x)− 1 = ln(
x

a− x
).

Since g′(x) = 0 implies x = a/2, f(x) has minimum at x = a/2 and f is strictly
decreasing for 0 < x < a/2, and strictly increasing for a/2 < x < a. Since
limx→0 f(x) = limx→a f(x) = aa, and a/4 ≤ k/n ≤ a − ε, there exists γ1, 0 <
γ1 < 1 such that

μn(η1)

μn(η0)
≤ P (n)γn1 . (3.20)

(2) If b < k ≤ b+ ε0n, for small ε0 satisfying 0 < ε0 < min(ε, a− 1/2), choose

η̃0 = (an− ε0n, b+ ε0n, 0, · · · , 0) ∈ Ωn,

and
η1 = (k, an− k − ε0n, b+ ε0n, 0, · · · , 0) ∈ Ωn,

then, from Lemma 3.2, μn(η0) ≥ μn(η̃0) and μn(η1) ≥ μn(η) for any η ∈ Ck,l.
Similarly we have

μn(η1)

μn(η0)
≤ μn(η1)

μn(η̃0)
≤ P (n)

((k/n)k/n(a− ε0 − k/n)a−ε0−k/n

(a− ε0)a−ε0
)αn

. (3.21)

and there exists γ2, 0 < γ2 < 1 such that

μn(η1)

μn(η̃0)
≤ P (n)γn2 . (3.22)

(3) If k > b+ ε0n then choose

η1 = (k, an− k + b, 0, · · · , 0) ∈ Ωn,

then, from Lemma 3.2, μn(η1) ≥ μn(η) for any η ∈ Ck,l. Moreover,
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μn(η1)

μn(η0)
=

(k!(an− k + b)!

(an)!b!

)α (3.23)

≤ P (n)(kk(an− k + b)an−k+b)α

((an)anbb)α
(3.24)

=
P (n)(kk(n− k)n−k)α

((an)an(n− an)(n−an))α
(3.25)

= P (n)
((k/n)k/n(1− k/n)1−k/n

(a)a(1− a)1−a
)αn (3.26)

Let
f1(x) = xx(1− x)1−x, (3.27)

then f1 is the case that a = 1 in (3.19). Therefore, f(x) has minimum at x = 1/2
and f is strictly decreasing for 0 < x < 1/2, and strictly increasing for 1/2 < x < 1.
Note that b + ε0n < k < (a − ε)n implies n − an + ε0n < k < (a − ε)n, i.e.,
1− a+ ε0 < k/n < a− ε. Since

f1(a) = f1(1− a) = aa(1− a)(1−a),

there exists γ3, 0 < γ3 < 1 such that

μn(η1)

μn(η0)
≤ P (n)γn3 . (3.28)

Let γ = max{γ1, γ2, γ3}, then γ < 1 and

νn
( (a−ε)n⋃
k=an/4

⋃
l

Ck,l

) ≤ μn

(⋃
k

⋃
l Ck,l

)
μn(η0)

(3.29)

≤
∑

k

∑
l μn(Ck,l)

μn(η0)
(3.30)

≤
∑
l

P (n)

(
n
l

)(
n
l

)
γn (3.31)

for some polynomial P (n).

Now, for ε1 > 0 sufficiently small,
(a) If l < ε1n, then, since (

n
l

)
≤

(
n
ε1n

)
,
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we have

νn
( (a−ε)n⋃
k=an/4

⋃
l≤ε1n

) ≤ n2P (n)

(
n
ε1n

)(
n
ε1n

)
γn (3.32)

≤ P (n)
( n!

(εn)!(n− εn)!

)2
γn (3.33)

≤ P (n)
( γ

(εε11 (1− ε1)1−ε1)2
)n

, (3.34)

for some polynomial P (n) which may vary in each expression. Since

lim
x→0

xx(1− x)1−x = 1, (3.35)

ε1 can be chosen to satisfy

(εε11 (1− ε1)
1−ε1)2 > γ.

(b) Now consider the case that l ≥ ε1n. If n− k − l − 2 ≤ an, we choose

η1 = (k, n− k − l − 2, 1, 1, · · · , 1, 0, · · · , 0).
Then, from Lemma 3.2, μn(η1) ≥ μn(η) for any η ∈ Ck,l. Moreover,

μn(η1)

μn(η0)
≤ (k!(n− k − l)!

(an)!b!

)α (3.36)

=
( k!(n− k)!

(an)!b!(n− k − 1)(n− k − 2) · · · (n− k − l)

)α (3.37)

≤ ( n!

(an)!b!

1

(n− k − 1)(n− k − 2) · · · (n− k − ε1n)

)α (3.38)

≤ ( C

((ε− ε1)n)αε1

)n
. (3.39)

Therefore,

νn
( (a−ε)n⋃
k=an/4

⋃
l≥ε1n

Ck,l

)
=

μn

(⋃
k

⋃
l Ck,l

)
μn(η0)

(3.40)

≤
∑

k

∑
l μn(Ck,l)

μn(η0)
(3.41)

≤ P (n)

(
n
l

)(
n
l

)( C

((ε− ε1)n)αε1

)n (3.42)

≤ ( C
nδ

)n
, (3.43)

for large n with constant δ and C which may vary in each expression.
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Therefore, from (a) and (b), we conclude that

νn(A(a−ε)n \Aan
4
) → 0.

�

From Proposition 3.3 and Proposition 3.4 we have the theorem.

Theorem 3.5. Suppose that g is given by (3.1). Then, for any ε > 0, there exists M, 0 < M <
1, such that ,

Z∗n ≥ (a− ε)n (3.44)

for large n.

Now, let us consider the other part, i.e., the upper bound of the size of the largest cluster.

Theorem 3.6. For any ε > 0, there exists an M such that

Z∗n ≤ (a+ ε)n (3.45)

for large n.

Proof. For any l, 1 ≤ l ≤ n, let Bl be the set of configurations with maximum cluster size
exactly l. Let η1 = (an, b, 0, · · · , 0) ∈ Ωn, with an+ b = n, and let η2 = (l, n− l, 0, · · · , 0).
From Lemma 3.2, μn(η2) ≥ μn(η) for any η ∈ Bl. Therefore, for l ≥ (a+ ε)n,

P{Zn ∈ Bl} = νn(Bl)

≤ μn(Bl)

μn(η1)

≤
n

(
2n
n

)
μn(η2)

μn(η1)
.

Since
(
2n
n

)
∼ P (n)2n, with some polynomial P (n), we have, for M < 1,

P{Zn ∈ Bl} = νn(Bl)

≤ P (n)2nM (φ(η1)−φ(η2))( l!(n− l)!

(an)!b!

)α
≤ P (n)2nM εn

( l!(n− l)!

n!

n!

(an)!b!

)α
≤ P (n)M εnλn,

where λ > 0 is a constant independent of n and l, and P (n) may differ in each expression.
Therefore,

P{Zn ≥ (a+ ε)n)} ≤ nP (n)M εnλn,
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and if M < (1/λ)1/ε, the probability that the maximum cluster size is larger than (a + ε)n
tends to zero as n tends to infinity. �

Since μn(η) is monotone on M , if the above theorem is true for M0, then it is true for all
M ≤ M0. Therefore, together with Theorem 3.5 we have

Theorem 3.7. Suppose that g is given by (3.1). Then, for any ε > 0, there exists M∗ > 0, such
that

(a− ε)n ≤ Z∗n ≤ (a+ ε)n (3.46)
for all M ≤ M∗ and for large n.
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