Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.001

Short-range magnetic order in La1-xBaxCoO3 cobaltites  

Long, Phan The (Theoretical Physics Research Group, Advanced Institute for Materials Science, Ton Duc Thang University)
Petrov, Dimitar N. (Department of Physical Chemistry, Plovdiv University "Paisii Hilendarski")
Cwik, J. (Institute of Low Temperature and Structure Research)
Dang, N.T. (Institute of Research and Development, Duy Tan University)
Dongquoc, Viet (Department of Materials Science and Engineering, Chungnam National University)
Abstract
Magnetization versus temperature and magnetic-field measurements, M(T, $H_a$), have been carried out to study the magnetic and critical properties of polycrystalline $La_{1-x}Ba_xCoO_3$ (x = 0.3 and 0.5) cobaltites. These compounds with the density of ${\sim}6.2g/cm^3$ crystallized in the $R{\bar{3}}c$ rhombohedral and $Pm{\bar{3}}m$ cubic structures, respectively. With an applied field $H_a=200Oe$, M(T) data have revealed that the samples with x = 0.3 and 0.5 exhibit the ferromagnetic-paramagnetic (FM-PM) phase transition at the Curie temperature points $T_C=202$ and 157 K, respectively. At 4.2 K, the saturation magnetization ($M_{sat}$) decreases from 35.9 emu/g for x = 0.3-26.1 emu/g for x = 0.5. Particularly, the critical-behavior analyses in the vicinity of $T_C$ reveal all samples undergoing a second-order phase transition, with critical exponent values (${\beta}=0.328$ and ${\gamma}=1.251$ for x = 0.3, and ${\beta}=0.331$ and ${\gamma}=1.246$ for x = 0.5) close to those expected for the 3D Ising model. This proves short-range magnetic order existing in $La_{1-x}Ba_xCoO_3$. We believe that magnetic inhomogeneities due to the mixture of hole-rich FM regions (confined in the trivalent-cobalt hole-poor anti-FM matrix) and uniaxial anisotropy prevent long-range order in $La_{1-x}Ba_xCoO_3$.
Keywords
Perovskite cobaltites; Magnetic properties; Critical behavior; Second-order phase transition; Short-range order;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.A. Ho, T.D. Thanh, T.O. Ho, Q.T. Tran, T.L. Phan, S.C. Yu, IEEE Trans. Magn. 50 (2014) 2505104.
2 F. Saadaoui, R. M'nassri, H. Omrani, M. Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, RSC Adv. 6 (2016) 50968.   DOI
3 L. Zhang, J. Fang, J. Fan, M. Ge, L. Ling, C. Zhang, L. Pi, S. Tan, Y. Zhang, J. Alloys Compd. 588 (2014) 294.   DOI
4 S. Mukherjee, P. Raychaudhuri, A.K. Nigam, Phys. Rev. B 61 (2000) 8651.   DOI
5 E. Efimova, V. Efimov, D.V. Karpinsky, A. Kuzmin, J. Purans, V. Sikolenko, S. Tiutiunnikov, I. Troyanchuk, E. Welter, D. Zajac, V. Simkin, A. Sazonov, J. Phys. Chem. Solid. 69 (2008) 2187.   DOI
6 M. Sahana, U.K. Rossler, N. Ghosh, S. Elizabeth, H.L. Bhat, K. Dorr, D. Eckert, M. Wolf, K.H. Muller, Phys. Rev. B 68 (2003) 144408.   DOI
7 C.N.R. Rao, M.M. Seikh, C. Narayana, Spin Crossover in Transition Metal Compounds II, Springer-Verlag, Berlin Heidelberg New York, 2004.
8 M.A. Senaris -Rodrig uez, J.B. Goodenough, J. Solid State Chem. 118 (1995) 323.   DOI
9 L. Siurakshina, B. Paulus, V. Yushankhai, E. Sivachenko, Eur. Phys. J. B. 74 (2010) 53.   DOI
10 D. Phelan, J. Yu, D. Louca, Phys. Rev. B 78 (2008) 094108.   DOI
11 Y. Wang, Y. Sui, P. Ren, L. Wang, X.J. Wang, W.H. Su, H.J. Fan, Inorg. Chem. 49/7 (2010) 3216.   DOI
12 M. Itoh, I. Natori, S. Kubota, K. Motoya, J. Phys. Soc. Jpn. 63 (1994) 1486.   DOI
13 D.P. Kozlenko, N.O. Golosova, Z. Jirak, L.S. Dubrovinsky, B.N. Savenko, M.G. Tucker, Y. Le Godec, V.P. Glazkov, Phys. Rev. B 75 (2007) 064422.   DOI
14 A. Ikeda, T. Nomura, Y.H. Matsuda, A. Matsuo, K. Kindo, K. Sato, Phys. Rev. B 93 (2016) 220401.   DOI
15 M.A. Korotin, S.Y. Ezhov, I.V. Solovyev, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, Phys. Rev. B 54 (1996) 5309.
16 M. Kriener, C. Zobel, A. Reichl, J. Baier, M. Cwik, K. Berggold, H. Kierspel, O. Zabara, A. Freimuth, T. Lorenz, Phys. Rev. B 69 (2004) 094417.   DOI
17 I. Fita, R. Szymczak, R. Puzniak, A. Wisniewski, I.O. Troyanchuk, D.V. Karpinsky, V. Markovich, H. Szymczak, Phys. Rev. B 83 (2011) 064414.   DOI
18 M.P. Breijo, S. Castro-Garcia, M.A. Senaris-Rodriguez, J. Mira, A. Fondado, J. Rivas, Ionics 5 (1999) 213.   DOI
19 A.B. Amor, M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, J. Supercond. Nov. Magn. 31 (2018) 419.   DOI
20 Y. Wang, H.J. Fan, Small 8/7 (2012) 1060.
21 J. Wu, J.W. Lynn, C.J. Glinka, J. Burley, H. Zheng, J.F. Mitchell, C. Leighton, Phys. Rev. Lett. 94 (2005) 037201.   DOI
22 J.B. Goodenough, J. Phys. Chem. Solid. 6 (1958) 287.   DOI
23 R. Mahendiran, A.K. Raychaudhuri, Phys. Rev. B 54 (1996) 16045.
24 C. Zhang, H. He, N. Wang, H. Chen, D. Kong, Ceram. Int. 39/4 (2013) 3685.
25 J.T. Mefford, X. Rong, A.M. Abakumov, W.G. Hardin, S. Dai, A.M. Kolpak, K.P. Johnston, K.J. Stevenson, Nat. Commun. 7 (2016) 1.
26 D.N.H. Nam, K. Jonason, P. Nordblad, N.V. Khiem, N.X. Phuc, Phys. Rev. B 59 (1999) 4189.   DOI
27 I. Fita, R. Szymczak, R. Puzniak, I.O. Troyanchuk, J. Fink-Finowicki, Y.M. Mukovskii, V.N. Varyukhin, H. Szymczak, Phys. Rev. B 71 (2005) 214404.   DOI
28 K. Muta, Y. Kobayashi, K. Asai, J. Phys. Soc. Jpn. 71 (2002) 2784.   DOI
29 D. Kumar, A. Banerjee, J. Phys. Condens. Matter 25 (2013) 216005.   DOI
30 N. Khan, P. Mandal, K. Mydeen, D. Prabhakaran, Phys. Rev. B 85 (2012) 214419.   DOI
31 J. Mira, J. Rivas, M. Vazquez, J.M.G. Beneytez, J. Arcas, R.D. Sanchez, M.A.S. Rodriguez, Phys. Rev. B 59 (1999) 123.   DOI
32 D. Phelan, D. Louca, S. Rosenkranz, S.-H. Lee, Y. Qiu, P.J. Chupas, R. Osborn, H. Zheng, J.F. Mitchell, J.R.D. Copley, J.L. Sarrao, Y. Moritomo, Phys. Rev. Lett. 96 (2006) 027201.   DOI
33 N. Khan, A. Midya, K. Mydeen, P. Mandal, A. Loidl, D. Prabhakaran, Phys. Rev. B 82 (2010) 064422.   DOI
34 M. Parra-Borderias, F. Bartolome, J. Herrero-Albillos, L.M. Garcia, J. Alloys Compd. 481 (2009) 48.   DOI
35 F. Fauth, E. Suard, V. Caignaert, Phys. Rev. B 65 (2001) 060401.   DOI
36 A.P. Sazonov, I.O. Troyanchuk, H. Gamari-Seale, V.V. Sikolenko, K.L. Stefanopoulos, G.K. Nicolaides, Y.K. Atanassova, J. Phys. Condens. Matter 21 (2009) 156004.   DOI
37 S.K. Banerjee, Phys. Lett. 12 (1964) 16.
38 D. Kim, B.L. Zink, F. Hellman, J.M.D. Coey, Phys. Rev. B 65 (2002) 214424.   DOI
39 W. Jiang, X.Z. Zhou, G. Williams, R. Privezentsev, Y. Mukovskii, Phys. Rev. B 79 (2009) 214433.   DOI
40 N. Orlovskaya, K. Kleveland, T. Grande, M.A. Einarsrud, J. Eur. Ceram. Soc. 20 (2000) 51.   DOI
41 V.V. Sikolenko, E.V. Pomjakushina, S.Y. Istomin, J. Magn. Magn. Mater. 258-259 (2003) 300.   DOI
42 V.V. Sikolenko, A.P. Sazonov, I.O. Troyanchuk, D. Tobbens, U. Zimmermann, E.V. Pomjakushina, H. Szymczak, J. Phys. Condens. Matter 16 (2004) 7313.   DOI
43 A. Mineshige, M. Inaba, T. Yao, Z. Ogumi, K. Kikuchi, M. Kawase, J. Solid State Chem. 121 (1996) 423.   DOI
44 A.M. Glazer, Acta Crystallogr. B 28 (1972) 3384.   DOI
45 J.L. Wang, C.C. Tang, G.H. Wu, Q.L. Liu, N. Tang, W.Q. Wang, Wang, W.H.F.M. Yang, J.K. Liang, F.R. de Boer, K.H.J. Buschow, Solid State Commun. 121 (2002) 615.   DOI
46 T.L. Phan, Y.D. Zhang, P. Zhang, T.D. Thanh, S.C. Yu, J. Appl. Phys. 112 (2012) 093906.   DOI
47 J. Cwik, J. Alloys Compd. 580 (2013) 341.   DOI
48 J. Cwik, Y. Koshkid'ko, A. Mikhailova, N. Kolchugina, K. Nenkov, A. Hackemer, M. Miller, J. Appl. Phys. 117 (2015) 123912.   DOI
49 K.H. Kim, T. Qian, B.G. Kim, J. Appl. Phys. 102 (2007) 033910.   DOI
50 A. Arrott, Phys. Rev. 108 (1957) 1394.   DOI
51 T.L. Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, B.W. Lee, A.T. Le, A.D. Phan, S.C. Yu, J. Alloys Compd. 657 (2016) 818.   DOI
52 S.N. Kaul, J. Magn. Magn. Mater. 53 (1985) 5.   DOI
53 A. Arrott, J.E. Noakes, Phys. Rev. Lett. 19 (1967) 786.   DOI
54 B. Widom, J. Chem. Phys. 43 (1965) 3898.   DOI
55 R. Caballero-Flores, N.S. Bingham, M.H. Phan, M.A. Torija, C. Leighton, V. Franco, A. Conde, T.L. Phan, S.C. Yu, H. Srikanth, J. Phys. Condens. Matter 26 (2014) 286001.   DOI
56 V.V. Krishnamurthy, I. Watanabe, K. Nagamine, H. Kuwahara, Y. Tokura, Phys. Rev. B 61 (2000) 4060.
57 Z. Mohamed, E. Tka, J. Dhahri, E.K. Hlil, J. Alloys Compd. 619 (2015) 520.   DOI