Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.12.3718

Hydrogen-Atom Abstraction Reaction of CF3CH2OCF3 by Hydroxyl Radical  

Singh, Hari Ji (Department of Chemistry, DDU Gorakhpur University)
Mishra, Bhupesh Kumar (Department of Chemistry, DDU Gorakhpur University)
Rao, Pradeep Kumar (Department of Chemistry, DDU Gorakhpur University)
Publication Information
Abstract
Theoretical investigations are carried out on the title reaction by means of ab-initio and DFT methods. The optimized geometries, frequencies and minimum energy path are obtained at UB3LYP/6-311G(d,p) level. Single point energy calculations are performed at MP2 and MP4 levels of theory. Energetics are further refined by calculating the energy of the species with a modified Gaussian-2 method, G2M(CC,MP2). The rate constant of the reaction is calculated using Canonical Transition State Theory (CTST) utilizing the ab-initio data obtained during the present study and is found to be $5.47{\times}10^{-12}\;cm^3\;molecule^{-1}s^{-1}$ at 298 K and 1 atm.
Keywords
Theoretical chemistry; Hydrofluoroethers; Potential energy surface; Canonical transition state theory;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, 37, 785.   DOI   ScienceOn
2 Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.   DOI
3 Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J.Chem. Phys. 1991, 94, 7221.   DOI
4 Mebel, A. M.; Morokuma, K.; Lin, M. C. J. Chem. Phys. 1995,103, 7414.   DOI   ScienceOn
5 In NIST Chemistry Web Book, NIST Standard Reference Database Number 69, Release (Constants of Diatomic Molecules data compiled by K.P. Huber and G. Herzberg), website: http://www. ccbdb.nist.gov/, 2005.
6 Kuchitsu, K. Structure of Free Polyatomic Molecules Basic Data; Springer-Verlag: Berlin, Vol 1, p 58, 1998.
7 Frisch, A.; Nielsen, A. B.; Holder, A. J. GaussView Users Manual, Gaussian Inc, 2003.
8 Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334.   DOI
9 Sun, H.; Gong, H.; Pan, X.; Hao, L.; Sun, C. C.; Wang, R.; Huang, X. J. Phys. Chem. A 2009, 113, 5951.   DOI   ScienceOn
10 Yang, L.; Liu, J.; Li, Z. J. Chem. Theory Comput. 2008, 4, 1073.   DOI   ScienceOn
11 Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.   DOI   ScienceOn
12 Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. J. Phys. Chem. 1996, 100, 12771.   DOI   ScienceOn
13 Wigner, E. P. Z. Phys. Chem. 1932, B19, 203.
14 Oyaro, N.; Sellevag, S. R.; Neilsen, C. J. J. Phys. Chem. A 2005,109, 337.   DOI   ScienceOn
15 Shimanouchi, T. In Tables of Molecular Vibrational Frequencies Consolidated; Vol 1, National Bureau of Standards: U.S. GPO, Washington, 1972.
16 In NIST Chemistry Web Book, NIST Standard Reference Database Number 69, (Vibrational frequency data compiled by T. Shimanouchi), website: http://www.ccbdb.nist.gov/, 2005.
17 Scientific Assessment of Stratospheric Ozone, Vol 11, World Meteorological Organization Global Ozone Research and Monitoring Project report No-20 (WMO, Geneva), 1989.
18 Wayne, R. P. Chemistry of Atmospheres; Clarendon press: Oxford,2001.
19 Sekiya, A.; Misaki, S. J. Fluorine Chem. 2000, 101, 215.   DOI   ScienceOn
20 Tsai, W. T. J. Hazard Mater. 2005, 119, 69.   DOI   ScienceOn
21 Bivens, D. B.; Minor, B. H. Int. J. Refrig. 1998, 21, 567.   DOI   ScienceOn
22 Ravishankara, R. A.; Turnipseed, A. A.; Jensen, N. R.; Barone, S.; Mills, M.; Howark, C. J.; Solomon, S. Science 1994, 263, 71.   DOI   ScienceOn
23 Granier, C.; Shine, K. P.; Daniel, J. S.; Hansen, J. E.; Lal, S.; Stordal, F. Climate Effects of Ozone and Halocarbon Changes; In Scientific Assessment of Ozone Depletion, 1998; Rep. 44, Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva, Switzerland, 1999.
24 Good, D. A.; Francisco, J. S. J. Phys. Chem. 1998, 102, 1854.   DOI   ScienceOn
25 Chen, L.; Kutsuna, S.; Tokuhashi, K.; Sekiya, A. J. Phys. Chem. A 2006, 110, 12845.   DOI   ScienceOn
26 Urata, S.; Takada, A.; Uchimaru, T.; Chandra, A. K. Chem. Phys.Lett. 2003, 368, 215.   DOI   ScienceOn
27 Chen, L.; Kutsuna, S.; Tokuhashi, K.; Sekiya, A.; Takeuchi, K.; Ibusuki, T. Int. J. Chem. Kinet. 2003, 35, 239.   DOI   ScienceOn
28 Good, D. A.; Kamboures, M.; Santiano, R.; Francisco, J. S. J. Phys.Chem. A 1999, 103, 9230.   DOI   ScienceOn
29 Wallington, T. J.; Schneider, W. F.; Sehested, J.; Blide, M.; Platz, J.; Nielsen, O. J.; Christensen, L. K. J. Phys. Chem. A 1997, 101, 8264.   DOI   ScienceOn
30 Frisch, M. J. et al. Gaussian 03 (Revision C.02); Gaussian Inc.; Wallingford, CT, 2004.
31 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI   ScienceOn
32 Weubbles, D. J. J. Geophys. Res. 1983, 88, 1433.   DOI
33 Solomon, S. Nature 1990, 347, 6291.
34 Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.   DOI
35 Rowland, F. S.; Molina, M. J. Chem. Eng. News 1994, 8, 72.