• Title/Summary/Keyword: $G^E$ models

Search Result 669, Processing Time 0.033 seconds

RAPID PREDICTION OF ENERGY CONTENT IN CEREAL FOOD PRODUCTS WITH NIRS.

  • Kays, Sandra E.;Barton, Franklin E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1511-1511
    • /
    • 2001
  • Energy content, expressed as calories per gram, is an important part of the evaluation and marketing of foods in developed countries. Currently accepted methods of measurement of energy by U.S. food labeling legislation include measurement of gross calories by bomb calorimetry with an adjustment for undigested protein and by calculation using specific factors for the energy values of protein, carbohydrate less the amount of insoluble dietary fiber, and total fat. The ability of NIRS to predict the energy value of diverse, processed and unprocessed cereal food products was investigated. NIR spectra of cereal products were obtained with an NIR Systems monochromator and the wavelength range used for analysis was 1104-2494 nm. Gross energy of the foods was measured by oxygen bomb calorimetry (Parr Manual No. 120) and expressed as calories per gram (CPGI, range 4.05-5.49 cal/g). Energy value was adjusted for undigested protein (CPG2, range 3.99-5.38 cal/g) and undigested protein and insoluble dietary fiber (CPG3, range 2.42-5.35 cal/g). Using a multivariate analysis software package (ISI International, Inc.) partial least squares models were developed for the prediction of energy content. The standard error of cross validation and multiple coefficient of determination for CPGI using modified partial least squares regression (n=127) was 0.060 cal/g and 0.95, respectively, and the standard error of performance, coefficient of determination, bias and slope using an independent validation set (n=59) were 0.057 cal/g, 0.98, -0.027 cal/g and 1.05 respectively. The PLS loading for factor 1 (Pearson correlation coefficient 0.92) had significant absorption peaks correlated to C-H stretch groups in lipid at 1722/1764 nm and 2304/2346 nm and O-H groups in carbohydrate at 1434 and 2076 nm. Thus the model appeared to be predominantly influenced by lipid and carbohydrate. Models for CPG2 and CPG3 showed similar trends with standard errors of performance, using the independent validation set, of 0.058 and 0.088 cal/g, respectively, and coefficients of determination of 0.96. Thus NIRS provides a rapid and efficient method of predicting energy content of diverse cereal foods.

  • PDF

Optimization of Atmospheric Cold Plasma Treatment with Different Gases for Reduction of Escherichia coli in Wheat Flour

  • Lee, Jeongmin;Park, Seul-Ki;Korber, Darren;Baik, Oon-Doo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.768-775
    • /
    • 2022
  • In this study we aimed to derive the response surface models for Escherichia coli reduction in wheat flour using atmospheric cold plasma (ACP) with three types of gas. The jet-type atmospheric cold plasma wand system was used with a 30 W power supply, and three gases (argon, air, and nitrogen) were applied as the treatment gas. The operating parameters for process optimization considered were wheat flour mass (g), treatment time (min), and gas flow rate (L/min). The wheat flour samples were artificially contaminated with E. coli at a concentration of 9.25 ± 0.74 log CFU/g. ACP treatments with argon, air, and nitrogen resulted in 2.66, 4.21, and 5.55 log CFU/g reduction of E. coli, respectively, in wheat flour under optimized conditions. The optimized conditions to reduce E. coli were 0.5 g of the flour mass, 15 min of treatment time, and 0.20 L/min of nitrogen gas flow rate, and the predicted highest reduction level from modeling was 5.63 log CFU/g.

Engineered human cardiac tissues for modeling heart diseases

  • Sungjin Min;Seung-Woo Cho
    • BMB Reports
    • /
    • v.56 no.1
    • /
    • pp.32-42
    • /
    • 2023
  • Heart disease is one of the major life-threatening diseases with high mortality and incidence worldwide. Several model systems, such as primary cells and animals, have been used to understand heart diseases and establish appropriate treatments. However, they have limitations in accuracy and reproducibility in recapitulating disease pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) cardiac tissue models produced using tissue engineering technology and human cells have outperformed conventional models. In particular, the integration of cell reprogramming techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and biophysical stimuli) has facilitated the development of heart-on-a-chip, cardiac spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and functional features of the native human heart. These cardiac models have improved heart disease modeling and toxicological evaluation. In this review, we summarize the cell types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, recent studies in the modeling of various heart diseases are reviewed.

Animals models of spinal cord contusion injury

  • Verma, Renuka;Virdi, Jasleen Kaur;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Pain
    • /
    • v.32 no.1
    • /
    • pp.12-21
    • /
    • 2019
  • Spinal cord contusion injury is one of the most serious nervous system disorders, characterized by high morbidity and disability. To mimic spinal cord contusion in humans, various animal models of spinal contusion injury have been developed. These models have been developed in rats, mice, and monkeys. However, most of these models are developed using rats. Two types of animal models, i.e. bilateral contusion injury and unilateral contusion injury models, are developed using either a weight drop method or impactor method. In the weight drop method, a specific weight or a rod, having a specific weight and diameter, is dropped from a specific height on to the exposed spinal cord. Low intensity injury is produced by dropping a 5 g weight from a height of 8 cm, moderate injury by dropping 10 g weight from a height of 12.5-25 mm, and high intensity injury by dropping a 25 g weight from a height of 50 mm. In the impactor method, injury is produced through an impactor by delivering a specific force to the exposed spinal cord area. Mild injury is produced by delivering $100{\pm}5kdyn$ of force, moderate injury by delivering $200{\pm}10kdyn$ of force, and severe injury by delivering $300{\pm}10kdyn$ of force. The contusion injury produces a significant development of locomotor dysfunction, which is generally evident from the $0-14^{th}$ day of surgery and is at its peak after the $28-56^{th}$ day. The present review discusses different animal models of spinal contusion injury.

The Evaluations of Sensor Models for Push-broom Satellite Sensor

  • Lee, Suk-Kun;Chang, Hoon
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • The aim of this research is comparing the existing approximation models (e.g. Affine Transformation and Direct Linear Transformation) with Rational Function Model as a substitute of rigorous sensor model of linear array scanner, especially push-broom sensor. To do so, this research investigates the mathematical model of each approximation method. This is followed by the assessments of accuracy of transformation from object space to image space by using simulated data generated by collinearity equations which incorporate or depict the physical aspects of linear array sensor.

  • PDF

Seismic performance assessment of single pipe piles using three-dimensional finite element modeling considering different parameters

  • Duaa Al-Jeznawi;Jitendra Khatti;Musab Aied Qissab Al-Janabi;Kamaldeep Singh Grover;Ismacahyadi Bagus Mohamed Jais;Bushra S Albusoda;Norazlan Khalid
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.455-475
    • /
    • 2023
  • The present study investigates the non-linear soil-pile interaction using three-dimensional (3D) non-linear finite element models. The numerical models were validated by using the results of extensive pile load and shaking table tests. The pile performance in liquefiable and non-liquefiable soil has been studied by analyzing the liquefaction ratio, pile lateral displacement (LD), pile bending moment (BM), and frictional resistance (FR) results. The pile models have been developed for the different ground conditions. The study reveals that the results obtained during the pile load test and shaking cycles have good agreement with the predicted pile and soil response. The soil density, peak ground acceleration (PGA), slenderness ratio (L/D), and soil condition (i.e., dry and saturated) are considered during modeling. Four ground motions are used for the non-linear time history analyses. Consequently, design charts are proposed depended on the analysis results to be used for design practice. Eleven models have been used to validate the capability of these charts to capture the soil-pile response under different seismic intensities. The results of the present study demonstrate that L/D ratio slightly affects the lateral displacement when compared with other parameters. Also, it has been observed that the increasing in PGA and decreasing L/D decreases the excess pore water pressure ratio; i.e., increasing PGA from 0.1 g to 0.82 g of loose sand model, decrease the liquefaction ratio by about 50%, and increasing L/D from 15 to 75 of the similar models (under Kobe earthquake), increase this ratio by about 30%. This study reveals that the lateral displacement increases nonlinearly under both dry and saturated conditions as the PGA increases. Similarly, it is observed that the BM increases under both dry and saturated states as the L/D ratio increases. Regarding the acceleration histories, the pile BM was reduced by reducing the acceleration intensity. Hence, the pile BM decreased to about 31% when the applied ground motion switched from Kobe (PGA=0.82 g) to Ali Algharbi (PGA=0.10 g). This study reveals that the soil conditions affect the relationship pattern between the FR and the PGA. Also, this research could be helpful in understanding the threat of earthquakes in different ground characteristics.

Microbial Risk Assessment of Non-Enterohemorrhagic Escherichia coli in Natural and Processed Cheeses in Korea

  • Kim, Kyungmi;Lee, Heeyoung;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.579-592
    • /
    • 2017
  • This study assessed the quantitative microbial risk of non-enterohemorrhagic Escherichia coli (EHEC). For hazard identification, hazards of non-EHEC E. coli in natural and processed cheeses were identified by research papers. Regarding exposure assessment, non-EHEC E. coli cell counts in cheese were enumerated, and the developed predictive models were used to describe the fates of non-EHEC E. coli strains in cheese during distribution and storage. In addition, data on the amounts and frequency of cheese consumption were collected from the research report of the Ministry of Food and Drug Safety. For hazard characterization, a doseresponse model for non-EHEC E. coli was used. Using the collected data, simulation models were constructed, using software @RISK to calculate the risk of illness per person per day. Non-EHEC E. coli cells in natural- (n=90) and processed-cheese samples (n=308) from factories and markets were not detected. Thus, we estimated the initial levels of contamination by Uniform distribution ${\times}$ Beta distribution, and the levels were -2.35 and -2.73 Log CFU/g for natural and processed cheese, respectively. The proposed predictive models described properly the fates of non-EHEC E. coli during distribution and storage of cheese. For hazard characterization, we used the Beta-Poisson model (${\alpha}=2.21{\times}10^{-1}$, $N_{50}=6.85{\times}10^7$). The results of risk characterization for non-EHEC E. coli in natural and processed cheese were $1.36{\times}10^{-7}$ and $2.12{\times}10^{-10}$ (the mean probability of illness per person per day), respectively. These results indicate that the risk of non-EHEC E. coli foodborne illness can be considered low in present conditions.

Performance analysis of a detailed FE modelling strategy to simulate the behaviour of masonry-infilled RC frames under cyclic loading

  • Mohamed, Hossameldeen M.;Romao, Xavier
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.551-565
    • /
    • 2018
  • Experimental testing is considered the most realistic approach to obtain a detailed representation of the nonlinear behaviour of masonry-infilled reinforced concrete (RC) structures. Among other applications, these tests can be used to calibrate the properties of numerical models such as simplified macro-models (e.g., strut-type models) representing the masonry infill behaviour. Since the significant cost of experimental tests limits their widespread use, alternative approaches need to be established to obtain adequate data to validate the referred simplified models. The proposed paper introduces a detailed finite element modelling strategy that can be used as an alternative to experimental tests to represent the behaviour of masonry-infilled RC frames under earthquake loading. Several examples of RC infilled frames with different infill configurations and properties subjected to cyclic loading are analysed using the proposed modelling approach. The comparison between numerical and experimental results shows that the numerical models capture the overall nonlinear behaviour of the physical specimens with adequate accuracy, predicting their monotonic stiffness, strength and several failure mechanisms.

EVOLUTIONARY MODELS OF ROTATING DENSE STELLAR SYSTEMS WITH EMBEDDED BLACK HOLES

  • FIESTAS, JOSE A.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.345-347
    • /
    • 2015
  • We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of an initial axi-symmetry due to rotation. Central black hole seeds are included in our models, and black hole growth due to the consumption of stellar matter is simulated until the central potential dominates the kinematics of the core. Our goal is to study the long-term evolution (Gyr) of relaxed dense stellar systems which deviate from spherical symmetry, and their morphology and final kinematics. With this purpose in mind, we developed a 2D Fokker-Planck analytical code, and confirmed its results using detailed N-Body simulations, applying a high performance code developed for GPU machines. We conclude that the initial rotation significantly modifies the shape and lifetime of these systems, and cannot be neglected in the study of the evolution of globular clusters, and the galaxy itself. Our models give a constraint for the final intermediate black hole masses expected to be present in globular clusters.

Design of IG-based Fuzzy Models Using Improved Space Search Algorithm (개선된 공간 탐색 알고리즘을 이용한 정보입자 기반 퍼지모델 설계)

  • Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.686-691
    • /
    • 2011
  • This study is concerned with the identification of fuzzy models. To address the optimization of fuzzy model, we proposed an improved space search evolutionary algorithm (ISSA) which is realized with the combination of space search algorithm and Gaussian mutation. The proposed ISSA is exploited here as the optimization vehicle for the design of fuzzy models. Considering the design of fuzzy models, we developed a hybrid identification method using information granulation and the ISSA. Information granules are treated as collections of objects (e.g. data) brought together by the criteria of proximity, similarity, or functionality. The overall hybrid identification comes in the form of two optimization mechanisms: structure identification and parameter identification. The structure identification is supported by the ISSA and C-Means while the parameter estimation is realized via the ISSA and weighted least square error method. A suite of comparative studies show that the proposed model leads to better performance in comparison with some existing models.