Browse > Article
http://dx.doi.org/10.4014/jmb.2203.03056

Optimization of Atmospheric Cold Plasma Treatment with Different Gases for Reduction of Escherichia coli in Wheat Flour  

Lee, Jeongmin (Department of Chemical and Biological Engineering, University of Saskatchewan)
Park, Seul-Ki (Department of Chemical and Biological Engineering, University of Saskatchewan)
Korber, Darren (Department of Food and Bioproduct Sciences, University of Saskatchewan)
Baik, Oon-Doo (Department of Chemical and Biological Engineering, University of Saskatchewan)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.6, 2022 , pp. 768-775 More about this Journal
Abstract
In this study we aimed to derive the response surface models for Escherichia coli reduction in wheat flour using atmospheric cold plasma (ACP) with three types of gas. The jet-type atmospheric cold plasma wand system was used with a 30 W power supply, and three gases (argon, air, and nitrogen) were applied as the treatment gas. The operating parameters for process optimization considered were wheat flour mass (g), treatment time (min), and gas flow rate (L/min). The wheat flour samples were artificially contaminated with E. coli at a concentration of 9.25 ± 0.74 log CFU/g. ACP treatments with argon, air, and nitrogen resulted in 2.66, 4.21, and 5.55 log CFU/g reduction of E. coli, respectively, in wheat flour under optimized conditions. The optimized conditions to reduce E. coli were 0.5 g of the flour mass, 15 min of treatment time, and 0.20 L/min of nitrogen gas flow rate, and the predicted highest reduction level from modeling was 5.63 log CFU/g.
Keywords
Non-thermal treatment; atmospheric cold plasma; wheat flour; response surface method; Escherichia coli;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Min SC, Roh SH, Niemira BA, Sites JE, Boyd G, Lacombe A. 2016. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7 Salmonella Listeria monocytogenes and Tulane virus in romaine lettuce. Int. J. Food. Microbiol. 237: 114-120.   DOI
2 Guerrero-Preston R, Ogawa T, Uemura M, Shumulinsky G, Valle BL, Pirini F, et al. 2014. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int. J. Mol. Med. 34: 941-946.   DOI
3 Jeon J, Rosentreter TM, Li Y, Isbary G, Thomas HM, Zimmermann JL, et al. 2014. Bactericidal agents produced by Surface Micro-Discharge (SMD) plasma by controlling gas compositions. Plasma Process. Polym. 11: 426-436.   DOI
4 Smet C, Baka M, Dickenson A, Walsh JL, Valdramidis VP, Van Impe JF. 2018. Antimicrobial efficacy of cold atmospheric plasma for different intrinsic and extrinsic parameters. Plasma Process. Polym. 15: 1700048.   DOI
5 Bahrami N, Bayliss D, Chope G, Penson S, Perehinec T, Fisk ID. 2016. Cold plasma: a new technology to modify wheat flour functionality. Food Chem. 202: 247-253.   DOI
6 Maran JP, Sivakumar V, Sridhar R, Immanuel VP. 2013. Development of model for mechanical properties of tapioca starch based edible films. Ind. Crops. Prod. 42: 159-168.   DOI
7 Feichtinger J, Schulz A, Walker M, Schumacher U. 2003. Sterilisation with low-pressure microwave plasmas. Surf. Coat. Technol. 174: 564-569.   DOI
8 Olatunde OO, Benjakul S, Vongkamjan K. 2019. High voltage cold atmospheric plasma: antibacterial properties and its effect on quality of Asian sea bass slices. Innov. Food Sci. Emerg. Technol. 52: 305-312.   DOI
9 Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann KD, Junger M. 2010. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process. Polym. 7: 224-230.   DOI
10 Kim JE, Lee DU, Min SC. 2014. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 38: 128-136.   DOI
11 Kong W, Liu N, Zhang J, Yang Q, Hua S, Song H, et al. 2014. Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. J. Food Sci. Technol. 51: 2006-2013.   DOI
12 Canadian Food Inspection Agency (CFIA). 2017. Canadian Food Inspection Agency's (CFIA) Investigation into E. coli O121 in Flour and Flour Products. Accessed June 2, 2017.
13 Crowe SJ, Bottichio L, Shade LN, Whitney BM, Corral N, Melius B, et al. 2017. Shiga toxin-producing E. coli infections associated with flour. N. Engl. J. Med. 377: 2036-2043.   DOI
14 Gill A, Carrillo C, Hadley M, Kenwell R, Chui L. 2019. Bacteriological analysis of wheat flour associated with an outbreak of Shiga toxin-producing Escherichia coli O121. Food Microbiol. 82: 474-481.   DOI
15 Rose DJ, Bianchini A, Martinez B, Flores RA. 2012. Methods for reducing microbial contamination of wheat flour and effects on functionality. Cereal Foods World 57:104-109.   DOI
16 Li M, Sun QJ, Zhu KX. 2017. Delineating the quality and component changes of whole-wheat flour and storage stability of fresh noodles induced by microwave treatment. LWT 84: 378-384.   DOI
17 Liu C, Zhang Y, Li H, Li L, Zheng X. 2020. Effect of ozone treatment on processing properties of wheat bran and shelf life characteristics of noodles fortified with wheat bran. J. Food Sci. Technol. 57: 3893-3902.   DOI
18 Bogaerts A, Neyts E, Gijbels R, Van der Mullen J. 2002. Gas discharge plasmas and their applications. Spectrochim. Acta B: At. Spectrosc. 57: 609-658.   DOI
19 Olatunde OO, Benjakul S, Vongkamjan K. 2019. Dielectric barrier discharge cold atmospheric plasma: bacterial inactivation mechanism. J. Food Saf. 39: 12705.
20 Patil S, Moiseev T, Misra NN, Cullen PJ, Mosnier JP, Keener KM, et al. 2014. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. J. Hosp. Infect. 88: 162-169.   DOI
21 Han L, Patil S, Boehm D, Milosavljevic V, Cullen PJ, Bourke P. 2016. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 82: 450-458.   DOI
22 Montgomery DC. 2017. Design and analysis of experiments. John wiley & sons. pp. 17-18, Hoboken, NJ, USA.
23 Hahnel M, von Woedtke T, Weltmann KD. 2010. Influence of the air humidity on the reduction of Bacillus spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge. Plasma Process. Polym. 7: 244-249.   DOI
24 Kumar A, Prasad B, Mishra IM. 2007. Process parametric study for ethene carboxylic acid removal onto powder activated carbon using Box-Behnken design. Chem. Eng. Technol. 30: 932-937.   DOI
25 Kvam E, Davis B, Mondello F, Garner AL. 2012. Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob. Agents Chemother. 56: 2028-2036.   DOI
26 Morton V, Kershaw T, Kearney A, Taylor M, Galanis E, Mah V, et al. 2020. The use of multiple hypothesis-generating methods in an outbreak investigation of Escherichia coli O121 infections associated with wheat flour Canada 2016-2017. Epidemiol. Infect. 148: e265.   DOI
27 Agundez-Arvizu Z, Fernandez-Ramirez MV, Arce-Corrales ME, Cruz-Zaragoza E, Melendrez R, Chernov V, et al. 2006. Gamma radiation effects on commercial Mexican bread making wheat flour. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 245: 455-458.   DOI
28 Pankaj SK, Misra NN, Cullen PJ. 2013. Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov. Food Sci. Emerg. Technol. 19: 153-157.   DOI
29 Bauer A, Ni Y, Bauer S, Paulsen P, Modic M, Walsh JL, et al. 2017. The effects of atmospheric pressure cold plasma treatment on microbiological physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Sci. 128: 77-87.   DOI
30 Misra NN, Kaur S, Tiwari BK, Kaur A, Singh N, Cullen PJ. 2015. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocoll. 44: 115-121.   DOI
31 Chen D, Wiertzema J, Peng P, Cheng Y, Liu J, Mao Q, et al. 2018. Effects of intense pulsed light on Cronobacter sakazakii inoculated in non-fat dry milk. J. Food Eng. 238: 178-187.   DOI
32 Niemira BA, Sites J. 2008. Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. J. Food Prot. 71: 1357-1365.   DOI
33 Han L, Patil S, Boehm D, Milosavljevic V, Cullen P, Bourke P. 2016. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 82: 450-458.   DOI
34 Han L, Boehm D, Amias E, Milosavljevic V, Cullen PJ, Bourke P. 2016. Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innov. Food Sci. Emerg. Technol. 38: 384-392.   DOI
35 Sureshkumar A, Sankar R, Mandal M, Neogi S. 2010. Effective bacterial inactivation using low temperature radio frequency plasma. Int. J. Pharm. 396: 17-22.   DOI
36 Qiu P, Cui M, Kang K, Park B, Son Y, Khim E, et al. 2014. Application of Box-Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2. Open Chem. J. 12: 164-172.   DOI
37 Mosovska S, Medvecka V, Halaszova N, Durina P, Valik L', Mikulajova A, et al. 2018. Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Int. Food Res. J. 106: 862-869.   DOI
38 Ziuzina D, Patil S, Cullen P, Keener K, Bourke P. 2013. Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J. Appl. Microbiol. 114: 778-787.   DOI
39 Zhuang H, Rothrock MJ, Line JE, Lawrence KC, Gamble GR, Bowker BC, et al. 2020. Optimization of in-package cold plasma treatment conditions for raw chicken breast meat with response surface methodology. Innov. Food Sci. Emerg. Technol. 66: 102477.   DOI