DOI QR코드

DOI QR Code

Optimization of Atmospheric Cold Plasma Treatment with Different Gases for Reduction of Escherichia coli in Wheat Flour

  • Lee, Jeongmin (Department of Chemical and Biological Engineering, University of Saskatchewan) ;
  • Park, Seul-Ki (Department of Chemical and Biological Engineering, University of Saskatchewan) ;
  • Korber, Darren (Department of Food and Bioproduct Sciences, University of Saskatchewan) ;
  • Baik, Oon-Doo (Department of Chemical and Biological Engineering, University of Saskatchewan)
  • Received : 2022.03.29
  • Accepted : 2022.04.13
  • Published : 2022.06.28

Abstract

In this study we aimed to derive the response surface models for Escherichia coli reduction in wheat flour using atmospheric cold plasma (ACP) with three types of gas. The jet-type atmospheric cold plasma wand system was used with a 30 W power supply, and three gases (argon, air, and nitrogen) were applied as the treatment gas. The operating parameters for process optimization considered were wheat flour mass (g), treatment time (min), and gas flow rate (L/min). The wheat flour samples were artificially contaminated with E. coli at a concentration of 9.25 ± 0.74 log CFU/g. ACP treatments with argon, air, and nitrogen resulted in 2.66, 4.21, and 5.55 log CFU/g reduction of E. coli, respectively, in wheat flour under optimized conditions. The optimized conditions to reduce E. coli were 0.5 g of the flour mass, 15 min of treatment time, and 0.20 L/min of nitrogen gas flow rate, and the predicted highest reduction level from modeling was 5.63 log CFU/g.

Keywords

Acknowledgement

We gratefully acknowledge the Saskatchewan Ministry of Agriculture for their financial support through the Agriculture Development Fund program (ADF #20180293). We also gratefully acknowledge the technical supports from Dr. Shannon Hood-Niefer, Saskatchewan Food Industry Development Centre.

References

  1. Crowe SJ, Bottichio L, Shade LN, Whitney BM, Corral N, Melius B, et al. 2017. Shiga toxin-producing E. coli infections associated with flour. N. Engl. J. Med. 377: 2036-2043. https://doi.org/10.1056/NEJMoa1615910
  2. Gill A, Carrillo C, Hadley M, Kenwell R, Chui L. 2019. Bacteriological analysis of wheat flour associated with an outbreak of Shiga toxin-producing Escherichia coli O121. Food Microbiol. 82: 474-481. https://doi.org/10.1016/j.fm.2019.03.023
  3. Morton V, Kershaw T, Kearney A, Taylor M, Galanis E, Mah V, et al. 2020. The use of multiple hypothesis-generating methods in an outbreak investigation of Escherichia coli O121 infections associated with wheat flour Canada 2016-2017. Epidemiol. Infect. 148: e265. https://doi.org/10.1017/S0950268820002381
  4. Rose DJ, Bianchini A, Martinez B, Flores RA. 2012. Methods for reducing microbial contamination of wheat flour and effects on functionality. Cereal Foods World 57:104-109. https://doi.org/10.1094/CFW-57-3-0104
  5. Canadian Food Inspection Agency (CFIA). 2017. Canadian Food Inspection Agency's (CFIA) Investigation into E. coli O121 in Flour and Flour Products. Accessed June 2, 2017.
  6. Agundez-Arvizu Z, Fernandez-Ramirez MV, Arce-Corrales ME, Cruz-Zaragoza E, Melendrez R, Chernov V, et al. 2006. Gamma radiation effects on commercial Mexican bread making wheat flour. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 245: 455-458. https://doi.org/10.1016/j.nimb.2005.11.141
  7. Li M, Sun QJ, Zhu KX. 2017. Delineating the quality and component changes of whole-wheat flour and storage stability of fresh noodles induced by microwave treatment. LWT 84: 378-384. https://doi.org/10.1016/j.lwt.2017.06.001
  8. Liu C, Zhang Y, Li H, Li L, Zheng X. 2020. Effect of ozone treatment on processing properties of wheat bran and shelf life characteristics of noodles fortified with wheat bran. J. Food Sci. Technol. 57: 3893-3902. https://doi.org/10.1007/s13197-020-04421-6
  9. Pankaj SK, Misra NN, Cullen PJ. 2013. Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov. Food Sci. Emerg. Technol. 19: 153-157. https://doi.org/10.1016/j.ifset.2013.03.001
  10. Bogaerts A, Neyts E, Gijbels R, Van der Mullen J. 2002. Gas discharge plasmas and their applications. Spectrochim. Acta B: At. Spectrosc. 57: 609-658. https://doi.org/10.1016/S0584-8547(01)00406-2
  11. Guerrero-Preston R, Ogawa T, Uemura M, Shumulinsky G, Valle BL, Pirini F, et al. 2014. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int. J. Mol. Med. 34: 941-946. https://doi.org/10.3892/ijmm.2014.1849
  12. Bauer A, Ni Y, Bauer S, Paulsen P, Modic M, Walsh JL, et al. 2017. The effects of atmospheric pressure cold plasma treatment on microbiological physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Sci. 128: 77-87. https://doi.org/10.1016/j.meatsci.2017.02.003
  13. Olatunde OO, Benjakul S, Vongkamjan K. 2019. Dielectric barrier discharge cold atmospheric plasma: bacterial inactivation mechanism. J. Food Saf. 39: 12705.
  14. Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann KD, Junger M. 2010. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process. Polym. 7: 224-230. https://doi.org/10.1002/ppap.200900059
  15. Hahnel M, von Woedtke T, Weltmann KD. 2010. Influence of the air humidity on the reduction of Bacillus spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge. Plasma Process. Polym. 7: 244-249. https://doi.org/10.1002/ppap.200900076
  16. Min SC, Roh SH, Niemira BA, Sites JE, Boyd G, Lacombe A. 2016. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7 Salmonella Listeria monocytogenes and Tulane virus in romaine lettuce. Int. J. Food. Microbiol. 237: 114-120. https://doi.org/10.1016/j.ijfoodmicro.2016.08.025
  17. Bahrami N, Bayliss D, Chope G, Penson S, Perehinec T, Fisk ID. 2016. Cold plasma: a new technology to modify wheat flour functionality. Food Chem. 202: 247-253. https://doi.org/10.1016/j.foodchem.2016.01.113
  18. Misra NN, Kaur S, Tiwari BK, Kaur A, Singh N, Cullen PJ. 2015. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocoll. 44: 115-121. https://doi.org/10.1016/j.foodhyd.2014.08.019
  19. Maran JP, Sivakumar V, Sridhar R, Immanuel VP. 2013. Development of model for mechanical properties of tapioca starch based edible films. Ind. Crops. Prod. 42: 159-168. https://doi.org/10.1016/j.indcrop.2012.05.011
  20. Kumar A, Prasad B, Mishra IM. 2007. Process parametric study for ethene carboxylic acid removal onto powder activated carbon using Box-Behnken design. Chem. Eng. Technol. 30: 932-937. https://doi.org/10.1002/ceat.200700084
  21. Montgomery DC. 2017. Design and analysis of experiments. John wiley & sons. pp. 17-18, Hoboken, NJ, USA.
  22. Feichtinger J, Schulz A, Walker M, Schumacher U. 2003. Sterilisation with low-pressure microwave plasmas. Surf. Coat. Technol. 174: 564-569. https://doi.org/10.1016/S0257-8972(03)00404-3
  23. Chen D, Wiertzema J, Peng P, Cheng Y, Liu J, Mao Q, et al. 2018. Effects of intense pulsed light on Cronobacter sakazakii inoculated in non-fat dry milk. J. Food Eng. 238: 178-187. https://doi.org/10.1016/j.jfoodeng.2018.06.022
  24. Niemira BA, Sites J. 2008. Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. J. Food Prot. 71: 1357-1365. https://doi.org/10.4315/0362-028X-71.7.1357
  25. Smet C, Baka M, Dickenson A, Walsh JL, Valdramidis VP, Van Impe JF. 2018. Antimicrobial efficacy of cold atmospheric plasma for different intrinsic and extrinsic parameters. Plasma Process. Polym. 15: 1700048. https://doi.org/10.1002/ppap.201700048
  26. Han L, Boehm D, Amias E, Milosavljevic V, Cullen PJ, Bourke P. 2016. Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innov. Food Sci. Emerg. Technol. 38: 384-392. https://doi.org/10.1016/j.ifset.2016.09.026
  27. Kvam E, Davis B, Mondello F, Garner AL. 2012. Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob. Agents Chemother. 56: 2028-2036. https://doi.org/10.1128/aac.05642-11
  28. Kim JE, Lee DU, Min SC. 2014. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 38: 128-136. https://doi.org/10.1016/j.fm.2013.08.019
  29. Sureshkumar A, Sankar R, Mandal M, Neogi S. 2010. Effective bacterial inactivation using low temperature radio frequency plasma. Int. J. Pharm. 396: 17-22. https://doi.org/10.1016/j.ijpharm.2010.05.045
  30. Qiu P, Cui M, Kang K, Park B, Son Y, Khim E, et al. 2014. Application of Box-Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2. Open Chem. J. 12: 164-172. https://doi.org/10.2478/s11532-013-0360-y
  31. Kong W, Liu N, Zhang J, Yang Q, Hua S, Song H, et al. 2014. Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. J. Food Sci. Technol. 51: 2006-2013. https://doi.org/10.1007/s13197-012-0706-z
  32. Han L, Patil S, Boehm D, Milosavljevic V, Cullen P, Bourke P. 2016. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 82: 450-458. https://doi.org/10.1128/AEM.02660-15
  33. Mosovska S, Medvecka V, Halaszova N, Durina P, Valik L', Mikulajova A, et al. 2018. Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Int. Food Res. J. 106: 862-869. https://doi.org/10.1016/j.foodres.2018.01.066
  34. Olatunde OO, Benjakul S, Vongkamjan K. 2019. High voltage cold atmospheric plasma: antibacterial properties and its effect on quality of Asian sea bass slices. Innov. Food Sci. Emerg. Technol. 52: 305-312. https://doi.org/10.1016/j.ifset.2019.01.011
  35. Ziuzina D, Patil S, Cullen P, Keener K, Bourke P. 2013. Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J. Appl. Microbiol. 114: 778-787. https://doi.org/10.1111/jam.12087
  36. Zhuang H, Rothrock MJ, Line JE, Lawrence KC, Gamble GR, Bowker BC, et al. 2020. Optimization of in-package cold plasma treatment conditions for raw chicken breast meat with response surface methodology. Innov. Food Sci. Emerg. Technol. 66: 102477. https://doi.org/10.1016/j.ifset.2020.102477
  37. Jeon J, Rosentreter TM, Li Y, Isbary G, Thomas HM, Zimmermann JL, et al. 2014. Bactericidal agents produced by Surface Micro-Discharge (SMD) plasma by controlling gas compositions. Plasma Process. Polym. 11: 426-436. https://doi.org/10.1002/ppap.201300173
  38. Patil S, Moiseev T, Misra NN, Cullen PJ, Mosnier JP, Keener KM, et al. 2014. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. J. Hosp. Infect. 88: 162-169. https://doi.org/10.1016/j.jhin.2014.08.009
  39. Han L, Patil S, Boehm D, Milosavljevic V, Cullen PJ, Bourke P. 2016. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 82: 450-458. https://doi.org/10.1128/AEM.02660-15