• Title/Summary/Keyword: $Fe_3O_4$ concentration

Search Result 370, Processing Time 0.035 seconds

Synthesis of Dawsonite (Basic Sodium Aluminum Carbonate) from Colloidal Earth (Aoolphane) by Treatment with Acid and Alkali (膠質土酸, Alkali 處理에 의한 Dawsonite의 合成에 관한 硏究)

  • Kwon Sang Wook
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.157-164
    • /
    • 1969
  • Aoolphane was treated with 30% Hydrochloric acid at $18^{\circ}C$ for two hows with stirring in order to obtain the insoluble form of SiO2 gel and to extract quantitatively both $Al_2O_3$as and $Fe_2O_3AlCl_3{\cdot}6H_2O Fe$ and $Cl_3{\cdot}6H_2O$ forms, respectively, at the same time. $SiO_2$ gel was filtered and to the filterate Ammonia was added to precipitate $Al(OH)_3[Fe(OH)_3 Contaminated ]$ The precipitate was separated by filteration and the filterate was recovered as the form of $NH_4Cl$. The precipitate was treated with 200g (NaOH)/l Concentration of NaOH a little excessively to the equivalent at $65~70^{\circ}C$ as $Fe(OH)_3$ formed was insoluble, it was filtered of and to the filterate containing $NaAl(OH)_4(OH_2)_2$Carbon dioxide gas was bubbled at $50^{\circ}C~90^{\circ}C$ to obtain the precipitate with excellent filterability and crystallinity. The product was certified to be Dawsonite $(NaAl(OH)_2CO_3)$ by X-Ray diffraction analysis at below $40^{\circ}C$, when $CO_2$ gas was bubbled into the relatively lower concentration of $NaAl(OH)_4(OH_2)_2$ solution, the precipitate of very fine particles was formed, which was hard to filter and with the Composition of $\alpha-Al_2O_3-H_2O$ (Boehmite).

  • PDF

A Study on the Recovery of a Metalic Fe-particle from the Steelmaking E.A.F. Slag by the Magnetic Separation (전기로 제강 슬래그에서 자력선별에 의한 지금의 회수)

  • 현종영;김형석;신강호;조동성
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.3-8
    • /
    • 1997
  • The EA.F. sleelmaking slag (slag that follow) of a cnmvany 1 Co.. containzd a simple substance of a metal, wustlte (FeO), magnetite (Fe,O,), gehlenite (CaAl,SiO,), monlicellite (CaMgSiO,), dc. To recovere a metal (Fe grade . t95%) in the slag, it is desirable that the particles of a metal are isolated from thc slag and madc for a liberated subslance. Then, the liberaled melal is easlly recoveled by a magnetic separation. If thc rcclarnalcd slag, the sizc of which ranges under 40 nun, have a mulli-stage crushing, the most of a metal in thc slag is simply isolaled as a liberated subslance. If the mad, lhat is a liberated subslance and a sphere, is recovered by a magnetic field intensity. the minimum intensity, at which a metal is attracted, is approximately IOOG and did no1 dcpcnd on the particle size of a metad in the same particles. TIe recovered material. that contdined a iron (Fe) over 95% is a metal which is crushed slag by l00G in the multi-stage. If the magnetic field intcns~ty increase, the recovery mcrcasc, but the concentration grade decrease Bewusc thc concentration eams more and more impurities, iron oxide and the coml~ound of alkali earth element. 'll~ercforc If the rccla~nated slag have the multi-stage crushing, the metal is almostly recovered in the crushed slag by lO0G on each particles. If the slag, used as a rcclamatian lhat is a amount of 350,000 tan from I Co., was undcr the multistage crushing and then separaled by 100gauss, it is possible to recova a metal approximately 2.500 Ion, lhat is 0.73% of n ~eclamated slag. in 304.7 mm particles and to recover 4.200 tan in 0.3-1.7 mm particles , that is 1.2% nf a rcclamated slag, in a year. Therefore, ihe told recoverable meld is 6,700 ton, that is 19% of a reclmated slag, in a year, too.

  • PDF

Studies on Preparation of Transparent Iron Oxide (투명산화철의 製造에 관한 硏究)

  • Baek, Moo-Hyun;Lim, Jong-Ho;Kim, Tae-Kyung;Lee, Seoung-Won
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.9-15
    • /
    • 2004
  • The optimum conditions were studied for the preparation of transparent iron oxide with the air oxidation of FeOOH. The FeOOH obtained by mixing NaOH and FeSO$_4$ solution in various conditions such as R(=2NaOH/FeSO$_4$), FeSO$_4$ concentration. reaction temperature and air flow rate. When the FeSO$_4$ increased gradually, the concentration of iron ion in the solution became high. So, particle size increased precipitating Fe$_3O_4$. Goethite dehydrate at about 200$^{\circ}C$ and ended the reaction at about 320$^{\circ}C$ forming hematite. The lower the reaction temperature was, the shorter the particle length of goethite and particle size decreased. When the flow rate of air as an oxidant increased, the amount of dissolved oxygen in the solution increased, which made oxidation rate increased. And then particle size of goethite decreased.

PREPARATION AND PROPERTIES OF OIL-BASED MAGNETIC FLUIDS WITH THE SYNTHESIZED MAGNETITE

  • Jang, K.O.;Doh, S.W.;Cho, S.I.;Shon, H.J.;Hur, W.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.819-823
    • /
    • 1995
  • The oil-based magnetic fluids were sysnthesized using ultra-fine $Fe_{3}O_{4}$ powder dispersed in hydrocarbon oil. To synthesize ultra-fine $Fe_{3}O_{4}$, we carried out the experiments varying the pH of reacting medium and the initial concentration of $Fe^{2+}$. We also investigated the amount of oleic acid to obtain a stable dispersion and the proper base oil of MF for loudspeaker application. The limits of adsorbed amount of oleic acid on the $Fe_{3}O_{4}$ surface were approximately 35~40 percents of the total magnetite weight. As the $Fe_{3}O_{4}$ content increased from 0.1g/cc to 0.6g/cc, the viscosity of oil-based magnetic fluid increased from 1,063cP to 1,828cP, and its saturation magnetization at 10kOe increased from 66G to 242G. When we tested the MF sample to a commercial speaker, improvements were noted.

  • PDF

Electrochemical Degradation of Phenol by Electro-Fenton Process (전기-펜톤 공정에 의한 페놀의 전기화학적 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.201-208
    • /
    • 2009
  • Oxidation of phenol in aqueous media by electro-Fenton process using Ru-Sn-Sb/graphite electrode has been studied. Hydrogen peroxide was electrically generated by reaction of dissolved oxygen in acidic solutions containing supporting electrolyte and $Fe^{2+}$ was added in aqueous media. Phenol degradation experiments were performed in the presence of electrolyte media at pH 3. Effect of operating parameters such as current, electrolyte type (NaCl, KCl and $Na_2SO_4$) and concentration, $Fe^{2+}$ concentration, air flow rate and phenol concentration were investigated to find the best experimental conditions for achieving overall phenol removal. Results showed that current of 2 A, NaCl electrolyte concentration of 2g/l, 0.5M concentration of $Fe^{2+}$, air flow rate of 1l/min were the best conditions for mineralization of the phenol by electro-Fenton.

Effects of supplementation cysteine-coated Fe3O4 nanoparticles compared to FeSO4, on reproductive performance in male quail

  • Abdolvand, Esmail;Farzinpour, Amjad;Vaziry, Asaad
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.15-24
    • /
    • 2020
  • Iron has a crucial role in growth as part of metalo-proteins like haemoglobin or myoglobin, enzymes; they are also involved in energetic reactions. Iron plays a vital role in fertility. At high doses, Iron has a harmful consequence on the reproductive system, which can be strongly reflected the final stage of spermatogenesis. Nutritional products are claiming to use nanotechnology and it is important to recognize the potential toxicity of nano-sized nutrients. Recently iron nanoparticles were proposed as a food additive for poultry. The objective of this study was to investigate the effects of L-cystein coated iron oxide nanoparticles on reproductive performance in male quails. The results of Fourier Transform Infrared Spectrometer, Alternating Gradient Force Magnetometer and Scaning Electron Microscopy showed that iron oxide nanoparticles was produced and have been coated with L-cycstein (Fe3O4-Cys NPs). A total of 100 one-week-old quail chicks were randomly placed to five groups of five replicates. Four quails (two male and two females) were raised in an individual cage for each replicate. The five experimental treatment diets consisted; negative control diet, with no Iron supplementation; positive control diet supplemented with 60 mg/kg of Fe3O4; treatment diets supplemented with 0.6, 6 and 60 mg/kg of L-cystein coated iron oxide nanoparticles. The hemoglobin, Red blood cell, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, gonadal somatic index, daily sperm production, total testicular sperm and sperm viability of the male quails that were fed with diet supplemented by 0.6 mg/kg of Fe3O4-Cys NPs were improved as compare with negative control. This study showed that not only the use of the Fe3O4-Cys nanoparticles had no side effects but also it can be used as a feed additive to improve the reproductive performance in male quails.

Functionalization of Fe3O4 Nanoparticles and Improvement of Dispersion Stability for Seperation of Biomolecules (생체분자 분리를 위한 Fe3O4 나노입자의 표면수식과 분산 안정성 향상)

  • Kim, Min-Jung;An, Guk-Hwan;Lim, Borami;Kim, Hee-Taik;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.256-260
    • /
    • 2007
  • The surface of magnetite ($Fe_{3}O_{4}$) nanoparticles prepared by coprecipitation method was modified by carboxylic acid group of poly(3-thiophenacetic acid (3TA)) and meso-2,3-dimercaptosuccinic acid (DMSA). Then the lysozyme protein was immobilized on the carboxylic acid group of the modification of the magnetite nanoparticles. The magnetite nanoparticles are spherical and the particle size is approximately 10 nm. We measured quantitative dispersion state by dispersion stability analyzer for each $Fe_{3}O_{4}$ nanoparticles with and without surface modification. The concentration of lysozyme on the modified magnetite nanoparticles was also investigated by a UV-Vis spectrometer and compared to that of magnetite nanoparticles without surface modification. The functionalized magnetite particles had higher enzymatic capacity and dispersion stability than non-functionalized magnetite nanoparticles.

Electrochemical Performance and Cr Tolerance in a La1-xBaxCo0.9Fe0.1O3-δ (x = 0.3, 0.4 and 0.5) Cathode for Solid Oxide Fuel Cells

  • Choe, Yeong-Ju;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.308-314
    • /
    • 2015
  • The electrochemical performance and Cr poisoning behavior of $La_{1-x}Ba_xCo_{0.9}Fe_{0.1}O_{3-{\delta}}$ (LBCF, x = 0.3, 0.4, 0.5) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathodes were investigated for solid oxide fuel cells (SOFCs). The polarization resistance of the LBCF/GDC/LBCF symmetrical cell was found to decrease with increasing Ba content (x value). This phenomenon might be associated with the high oxygen vacancy concentration in the LBCF sample, with x = 0.5. In addition, there was no chromium poisoning in the LBCF cathode. On the other hand, the polarization resistance of the LSCF cathode was found to significantly increase after exposure to gaseous chromium species; it appears that this result stemmed from the formation of $SrCrO_4$ phase. Therefore, it can be expected that LBCF can be a durable potential cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFC).

Effect of Hydrogen Concentration on Surface Oxidation Behavior of Alloy 600 in Simulated Primary Water of Pressurized Water Reactor (원전 1차측 수화학 환경에서 수소 농도가 Alloy 600의 표면산화 거동에 미치는 영향)

  • Yun Soo, Lim;Dong Jin, Kim;Sung Woo, Kim;Seong Sik, Hwang;Hong Pyo, Kim;Sung Hwan, Cho
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.466-475
    • /
    • 2022
  • Surface oxides and intergranular (IG) oxidation phenomena in Alloy 600 depending on hydrogen concentration were characterized to obtain clear insight into the primary water stress corrosion cracking (PWSCC) behavior upon exposure to pressurized water reactor primary water. When hydrogen concentration was between 5 and 30 cm3 H2/kg H2O, NiFe2O4 and NiO type oxides were found on the surface. NiO type oxides were found inside the oxidized grain boundary when hydrogen concentration was 5 cm3 H2/kg H2O. However, only NiFe2O4 spinel on the surface and Ni enrichment were observed when hydrogen concentration was 30 cm3 H2/kg H2O. These results indicate that the oxidation/reduction reaction of Ni in Alloy 600 depending on hydrogen concentration can considerably affect surface oxidation behavior. It appears that the formation of NiO type oxides in a Ni oxidation state and Ni enrichment in a Ni reduction (or metallic) state are common in primary water. It is believed that the above different oxidation/reduction reactions of Ni in Alloy 600 depending on hydrogen concentration can also significantly affect the resistance to PWSCC of Alloy 600.

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.