• Title/Summary/Keyword: $Fe^{2+}

Search Result 11,669, Processing Time 0.046 seconds

Electrochemical Properties of FeS2 Thin Film Electrodes for Thermal Batteries (열전지용 FeS2 박막전극의 전기화학적 특성)

  • Im, Chae-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.318-324
    • /
    • 2017
  • Powder compaction technology is widely used to prepare thermal battery components. This method, however, is limited by the size, thickness, and geometry of the battery components. This limitation leads to excessive cell capacity, overweight, and higher cost of the pellets, which decreases the specific capacities and delays the activation time of thermal batteries. $FeS_2$ thin-film cathodes were fabricated by tape-casting technology and analyzed by SEM and EDS in this paper. The residual organic binder of the $FeS_2$ thin-film cathodes decreased with the temperature of the heat treatment, which improved the specific capacity because of the lower resistance. Specific capacities of the $FeS_2$ thin-film cathodes decreased because of the higher residual binder and the restrictive reaction of active materials with molten salts as the thickness increased. $FeS_2$ thin-film cathodes showed much higher specific capacity (1,212.2 As/g) than pellet cathodes (860.7 As/g) at the optimal heat-treatment temperature ($230^{\circ}C$).

A Study on the Electromagnetic Wave Absorption Properties and Microstructure for the Composition Ratio of Ni-Zn-Fe$_2$O$_4$ (Ni-Zn-Fe$_2$O$_4$의 조성비에 따른 전파흡수 특성과 미세구조에 관한 연구)

  • 조재원;문치현;문현욱;신용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.144-148
    • /
    • 1993
  • This paper is a study on electromagnetic wave absorption properties for the composition ratio of Ni-Zn-Fe$_2$O$_4$. Li-Zn-Fe$_2$O$_4$was composed of Fe$_2$O$_3$ 48∼51mo1%, LiO 18 ∼22mo1%, ZnO 34∼27mo1%. and sintering was carried out at 1200$^{\circ}C$. Through the experiments, the resonance phenomenon occured at low frequence range for high permeability, and vice versa. Specialy, In the case of Fe$_2$O$_3$49mol%, NiO 20mo1%, ZnO 3lmol% ,and the matching thickness was 10mm , the absorbing bandwith was 0.35 ∼0.95GHz. Also, In the case of Fe$_2$O$_3$51mo1%. NiO 22mo1%, ZnO 27mol%, we could get the absorbing bandwith of 0.45∼1.2GHz when the matching thickness was 6mm. Therefore. it is proved that electromagnetic wave absorbers with the above bandwidth range can be fabricated successful1y.

  • PDF

Photodecomposition of Different Organic Dyes Using Fe-CNT/TiO2 Composites under UV and Visible Light

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • The Fe-treated CNT/$TiO_2$ photocatalysts mixed with anatase and rutile phase have been developed for the decomposition of non-biodegradable different organic dyes like methylene blue (MB), rhodamine B (Rh.B), and methyl orange (MO) in two conditions as ultraviolet and visible light respectively. The results indicate that all the Fe-CNT/$TiO_2$ composites proved to be more efficient photocatalysts since degradation of MB at higher reaction rates, tthe decomposition rate of different dyes increases with an increase of $Fe^{3+}$ concentration in composites the highest rate of decomposition of different dyes was noted under UV irradiation. These results can indicate that the large CNT network is facilitate the electron transfer and strongly adsorb dye molecules on the texted photocatalysts, iron is reactive in the photo-Fenton process resulting in high production of OH radicals and also high activity of the photocatalyst. And Fe particles can generate more photoinduced electrons to conduction band of $TiO_2$ under visible light irradiation. The composites of Fe-CNT/$TiO_2$ photocatalysts synthesized by a sol-gel method were characterized by BET, TEM, SEM, XRD and EDX.

Preparation and Characterization and Visible Light Photocatalytic Activity of Fe-Treated AC/TiO2 Composites for Methylene Blue

  • Meng, Za-Da;Zhang, Kan;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.621-626
    • /
    • 2009
  • Fe-AC/Ti$O_2$ photocatalysts were prepared by a sol-gel method. The photocatalytic properties of Fe-AC/Ti$O_2$ photocatalysts for the purification of water have been investigated. The samples were characterized by scanning electron microscopy (SEM), specific surface area (BET), X-ray diffraction analysis (XRD), and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. It was found that the prepared Fe-AC/Ti$O_2$ composites have an excellent photocatalytic under visible light irradiation. A small amount of Fe ions in the AC/Ti$O_2$ composites could obviously enhance their photocatalytic activity. The high activities of the Fe-AC/Ti$O_2$ composites could be attributed to the results of the synergetic effects of the enhancement of the Fe element, the photocatalytic activity of Ti$O_2$, and the adsorption of AC.

Fabrication of Nanostructured $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ Composite by Pulsed Current Activated Sintering from Mechanically Synthesized Powder (기계적으로 합성한 분말로부터 펄스전류 활성 소결에 의한 나노구조 $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ 복합재료제조)

  • Park, Na-Ra;Song, Jun-Young;Nam, Kee-Seok;Shon, In-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.3
    • /
    • pp.149-154
    • /
    • 2009
  • Dense $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ composite was consolidated from mechanically synthesized powders by pulsed current activated sintering method within 1 min. $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ powder was synthesized from 3CuO and 2FeAI using the high energy ball milling. Dense $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and the pulsed current. Mechanical properties and grain size of the composite were investigated.

Mechanical alloy and Thermoelectric Properties of $\beta-FeSi_2$ by Planetary Ball Milling (기계적 합금법에 의한 $\beta-FeSi_2$분말 합성 및 열전특성)

  • Park Keunil;Cho Sung Il
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • The mechanical synthesis of thermoelectric material $FeSi_2$ by planetary ball mill has been investigated. The homogeneous and amorphous mixture of Fe-Si has been obtained by mechanical alloying for 850 rpm-40 min. The $\beta-FeSi_2$ powder could be synthesized by 1123 K-3 hr annealing heat treatment after mechanical alloying for 850 rpm-10, 20, and 40 min. The ceramic samples doped with the maximum content up to $10\;at.\;\%$ Co have exhibited semiconduction phenomena and maximum thermoelectric powder at 440K.

Manufacture of magnetite (Fe3O4) electrode and its electrochemical properties (마그네타이트 (Fe3O4) 전극의 제조와 전기화학 특성)

  • Kim, Myong-Jin;Kim, Dong Jin;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • Flow Accelerated Corrosion (FAC) causes unexpected accidents in a secondary side of a nuclear power plant. The secondary side pipes are mainly carbon steel tubes that have a protective magnetite ($Fe_3O_4$) layer on the inner surface. The stability of the protective magnetite layer depends on the parameters related to the FAC phenomena such as pH, temperature, flow rate, surface roughness etc. The dissolution of magnetite is basically the electrochemical reaction, but the most of the experiments of magnetite dissolution were carried out thermodynamically to determine the solubility of magnetite. The knowledge of the electrochemical properties of magnetite is required to understand the dissolution process of magnetite. This paper reviews the manufacture of the magnetite ($Fe_3O_4$) electrode, and summaries the electrochemical properties of the magnetite.

Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Jung, Ok-Sang;Cho, Chae-Ryong;Jeong, Euh-Duck;Ha, Myoung-Gyu;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1738-1742
    • /
    • 2009
  • Nanocrystalline Zn$Fe_2O_4$ oxide-semiconductor with spinel structure was synthesized by the polymerized complex (PC) method and investigated for its photocatalytic and photoelectric properties. The observation of a highly pure phase and a lower crystallization temperature in Zn$Fe_2O_4$ made by PC method is in total contrast to that was observed in Zn$Fe_2O_4$ prepared by the conventional solid-state reaction (SSR) method. The band gap of the nanocrystalline Zn$Fe_2O_4$ determined by UV-DRS was 1.90 eV (653 nm). The photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method as investigated by the photo-decomposition of isopropyl alcohol (IPA) under visible light (${\geq}$ 420 nm) was much higher than that of the Zn$Fe_2O_4$ prepared by SSR as well as Ti$O_{2-x}N_x$. High photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method was mainly due to its surface area, crystallinity and the dispersity of platinum metal over Zn$Fe_2O_4$.

Effects of Fe, Mn Contents on the Al Alloys and STD61 Steel Die Soldering (Al 합금과 STD61강의 소착에 미치는 첨가원소 Fe, Mn의 영향)

  • Kim, Yu-Mi;Hong, Sung-Kil;Choi, Se-Weon;Kim, Young-Chan;Kang, Chang-Seog
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.169-173
    • /
    • 2012
  • Recently, various attempts to produce a heat sink made of Al 6xxx alloys have been carried out using die-casting. In order to apply die-casting, the Al alloys should be verified for die-soldering ability with die steel. It is generally well known that both Fe and Mn contents have effects on decreasing die soldering, especially with aluminum alloys containing substantial amounts of Si. However, die soldering has not been widely studied for the low Si aluminum (1.0~2.0wt%) alloys. Therefore, in this study, an investigation was performed to consider how the soldering phenomena were affected by Fe and Mn contents in low Si aluminum alloys. Each aluminum alloy was melted and held at $680^{\circ}C$. Then, STD61 substrate was dipped for 2 hr in the melt. The specimens, which were air cooled, were observed using a scanning electron microscope and were line analyzed by an electron probe micro analyzer. The SEM results of the dipping soldering test showed an Al-Fe inter-metallic layer in the microstructure. With increasing Fe content up to 0.35%, the Al-Fe inter-metallic layer became thicker. In Al-1.0%Si alloy, the additional content of Mn also increased the thickness of the inter-metallic layer compared to that in the alloy without Mn. In addition, EPMA analysis showed that Al-Fe inter-metallic compounds such as $Al_2Fe$, $Al_3Fe$, and $Al_5Fe_2$ formed in the die soldering layers.

The Effects of Fe and V on the Characteristics of $\beta$to$\alpha$ Transformation for Zr-0.8Sn Alloys (Fe와 V이 Zr-0.8Sn 합금의 $\beta{\rightarrow}\alpha$ 상변태 특성에 미치는 영향)

  • O, Yeong-Min;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.636-641
    • /
    • 2000
  • The effects of Fe and V content on the characteristics of $\beta$ to $\alpha$ phase transformation for Zr-0.8Sn alloys were studied by optical and transmission electron microscopy. With increasing V content, $\beta{\rightarrow}\alpha+\beta$ transformation temperature decreased, thus allowing the width of $\alpha$-lath to be fine air-cooled Zr-0.8Sn-xV alloys. The width of $\alpha$-lath, however, was slightly increased with Fe content. While the $\beta$ to $\alpha$ transformed microstructures of water-quenched Zr-0.8Sn, Zr-0.8Sn-0.1Fe, Zr-0.8Sn-0.2Fe, Zr-0.8Sn-0.4Fe, Zr-0.8Sn-0.1V and Zr-0.8Sn-0.2V were mainly slipped martensite, that of water-quenched Zr-0.8Sn-0.4V was predominantly twinned martensite. The transition of slipped martensite to twinned martensite in Zr-0.8Sn-Xv was thought to be due to the decrease of $M_S$ temperature.

  • PDF