Browse > Article
http://dx.doi.org/10.4191/KCERS.2010.47.2.169

Photodecomposition of Different Organic Dyes Using Fe-CNT/TiO2 Composites under UV and Visible Light  

Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University)
Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University)
Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
Publication Information
Abstract
The Fe-treated CNT/$TiO_2$ photocatalysts mixed with anatase and rutile phase have been developed for the decomposition of non-biodegradable different organic dyes like methylene blue (MB), rhodamine B (Rh.B), and methyl orange (MO) in two conditions as ultraviolet and visible light respectively. The results indicate that all the Fe-CNT/$TiO_2$ composites proved to be more efficient photocatalysts since degradation of MB at higher reaction rates, tthe decomposition rate of different dyes increases with an increase of $Fe^{3+}$ concentration in composites the highest rate of decomposition of different dyes was noted under UV irradiation. These results can indicate that the large CNT network is facilitate the electron transfer and strongly adsorb dye molecules on the texted photocatalysts, iron is reactive in the photo-Fenton process resulting in high production of OH radicals and also high activity of the photocatalyst. And Fe particles can generate more photoinduced electrons to conduction band of $TiO_2$ under visible light irradiation. The composites of Fe-CNT/$TiO_2$ photocatalysts synthesized by a sol-gel method were characterized by BET, TEM, SEM, XRD and EDX.
Keywords
Photocatalytic activity; Fe-CNT/$TiO_2$ composites; Ultraviolet; Visible light;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 L. Q. Jing, Y. C. Qu, B.Q. Wang, S. D. Li, B. J. Jiang, L. B. Yang, W. Fu, H. G. Fu, and J. Z. Sun, “Review of Photoluminescence Performance of Nano-sized Semiconductor Materials and Its Relationships with Photocatalytic Activity,” Sol. Energ. Mat. Sol. C., 90 1773-8 (2006).   DOI
2 A. Fujishima, X. T. Zhang, and D. A. Tryk, “Heterogeneous Photocatalysis: Fromwater Photolysis to Applications in Environmental Cleanup,” Int. J. Hydrogen Energ., 32 2664-72 (2007).   DOI
3 O. S. Mohamed, S. A. Ahmed, M. F. Mostafa, and A. A. Abdel-Wahab, “Nanoparticles $TiO_2-photocatalyzed$ Oxidation of Selected Cyclohexyl Alcohols,” J. Photochem. Photobiol. A: Chem., 200 209-15 (2008).   DOI
4 A. O. Ibhadon, G. M. Greenway, Y. Yue, P. Falaras, and D. Tsoukleris, “The Photocatalytic Activity and Kinetics of the Degradation of an Anionic Azo-dye in a UV Irradiated Porous Titania Foam,” Appl. Catal. B: Environ., 84 351-5 (2008).   DOI
5 M. R. Hoffmann, S. T. Martin,W. Y. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., 95 [1] 69-96 (1995).   DOI
6 A. L. Linsebigler, G.Q. Lu, and J. T. Yates Jr., “Photocatalysis on $TiO_2$ Surfaces Principles, Mechanisms, and Selected Results,” Chem. Rev., 95 [3] 735-58(1995).   DOI
7 N. Negishi, T. Iyoda, K. Hashimoto, and A. Fujishima, “Preparation of Transparent $TiO_2$ Thin Film Photocatalyst and Its Photocatalytic Activity,” Chem. Lett., 24 [9] 841-3 (1995).
8 I. Sopyan, M.Watanabe, and S. Murasawa, “Efficient $TiO_2$ Powder and Film Photocatalysts with Rutile Crystal Structure,” Chem. Lett., 1 69-71(1996).
9 T. Torimoto, S. Ito, S. Kuwabata, and H. Yoneyama, “Effects of Adsorbents used as Supports for Titanium Dioxide Loading on Photocatalytic Degradation of Propyzamide,” Environ. Sci. Technol., 30 1275-81 (1996).   DOI
10 X. Zhang, F. Zhang, and K. Y. Chan, “The Synthesis of Ptmodified Titanium Dioxide Thin Films by Microemulsion Templating, Their Characterization and Visible-light Photocatalytic Properties,” Mater. Chem. Phys., 97 384-9 (2006).   DOI
11 W. Choi, A. Termin, and M. Hoffmann, “The Role of Metal-Ion Dopants in Quantum-Sized $TiO_2$: Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics,” J. Phys. Chem., 98 13669-79 (1994).   DOI
12 W. Shockley and W.T. Read, “Statistics of the Recombinations of Holes and Electrons,” J. Phys. Rev., 87 835-42 (1952).   DOI
13 M. Hamadanian, A.Reisi-Vanani, and A. Majedi “Preparation and Characterization of S-doped $TiO_2$ Nanoparticles, Effect of Calcination Temperature and Evaluation of Photocatalytic Activity,” Mater Chem and Phys., 116 376-82 (2009).   DOI
14 A. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides,” Sci., 293 269-71 (2001).   DOI
15 M. L. Chen, F. J. Zhang, and W. C. Oh, “Synthesis, Characterization, and Photocatalytic Analysis of $CNT/TiO_2$ Composites Derived from MWCNTs and Titanium Sources,” New Carbon Mate., 24 159-66 (2009).   DOI
16 W.C. Oh and M. L. Chen, “Synthesis and Characterization of $CNT/TiO_2$ Composites Thermally Derived from MWCNT and Ti-tanium(IV) n-butoxide,” Bull Korean Chem Soc., 29 159-65 (2008).   DOI
17 A. Sclafani and J. M. Herrmann, “Influence of Metallic Silver and of Platinum-silver Bimetallic Deposits on the Photocatalytic Activity of Titania (anatase and rutile) in Organic and Aqueous Media,” J. Photocham and Photobio A: Chem., 113 181-9 (1998).
18 V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy. “Photocatalytic Oxidation of Organics in Water using Pure and Silver-modified Titanium Dioxide Particles,” J. Photocham and Photobio A: Chem., 148 233-45 (2002).   DOI   ScienceOn
19 B.A. Holmen, M. I. Tejedor-Tejedor, and W.H. Casey, “Hydroxamate Complexes in Solution and at the Goethitewater Interface: A Cylindrical Internal Reflection Fourier Transform Infrared Spectroscopy Study,” Langmuir., 13 2197-206 (1997).   DOI
20 J. Arana, O. Gonzalez Diaz, J.M. Dona Rodriguez, J.A. Herrera Melian, C. Garriga i Cabo, J. Perez Pena, M. Carmen Hidalgo, and Jose A. Navio-Santos, “Role of $Fe^{3+}/Fe^{2+}$ as $TiO_2$ Dopant Ions in Photocatalytic Degradation of Carboxylic Acids,” J. Mol. Catal. A: Chem., 197 157-71 (2003).
21 Y. F. Tu, S.Y. Huang, J. P. Sang, and X.W. Zou, “Preparation of Fe-doped $TiO_2$ Nanotube Arrays and Their Photocatalytic Activities under Visible Light,” Mater. Res. Bull., 45 224-9 (2010).   DOI
22 M. Alam Khan, S.l. Woo, and O. Bong Yang, “Hydrothermally Stabilized Fe(III) Doped Titania Active under Visible Light for Water Splitting Reaction,” Inter. J. Hydrogen. Energy., 33 5345-51 (2008).   DOI
23 A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, “Photocatalytic Degradation Pathway of Methylene blue in Water,” Appl. Catal. B: Environ., 31 145-57 (2001).   DOI
24 Y. B. Xie and C. W. Yuan, “Visible-light Responsive Cerium Ion Modified Titania Sol and Nanocrystallites for X-3B Dye Photodegradation,” Appl. Catal. B: Environ., 46 251-9 (2003).   DOI
25 Y. B. Xie and C.W. Yuan, “Photocatalysis of Neodymium Ion Modified $TiO_2$ Sol under Visible Light Irradiation,” Appl. Surf. Sci., 221 17-24 (2004).   DOI   ScienceOn
26 P. Serp, M. Corrias, and P. Kalck, “Carbon Nanotubes and Nanofibers in Catalysis,” Appl. Catal. A: General., 253 337-58 (2003).   DOI
27 T. Y. Han, C. F. Wu, and C. T. Hsieh, “Hydrothermal Synthesis and Visible Light Photocatalysis of Metal-doped Titania Nanoparticles,” J. Vac. Sci. Technol. B., 25 430-5 (2007).   DOI
28 K. Zhang, Z. D. Meng, W. B. Ko, and W. C. Oh, “Fabrication of $Fe-ACF/TiO_2$ Composites and Their Photonic Activity for Organic Dye,” Anal. Sci. Technol., 22 254-62 (2009)
29 T. Z. Tong, J. L. Zhang, B. Z. Tian, F. Chen, and D. N. He, “Preparation of $Fe^{3+}-doped$ $TiO_2$ Catalysts by Controlled Hydrolysis of Titanium Alkoxide and Study on Their Photocatalytic Activity for Methyl Orange Degradation,” J. Hazard. Mater., 155 572-9 (2008).   DOI
30 Z. Ambrus, N. Balázs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi and K. Mogyorosi, “Synthesis, Structure and Photocatalytic Properties of Fe(III)-doped $TiO_2$ Prepared from $TiCl_3$,” Appl. Catal. B: Environ., 81 27-37 (2008).   DOI
31 W. Y. Teoh, R. Amal, L. Mädler, and S. E. Pratsinis, “Flame Sprayed Visible Light-active $Fe-TiO_2$ for Photomineralization of Oxalic Acid,” Catal. Today., 120 203-13 (2007).   DOI
32 Z. Q. Yu and S. C. Chuang, “The Effect of Pt on the Photocatalytic Degradation Pathway of Methylene Blue over $TiO_2$ under Ambient Conditions,” Appl. Catal. B: Environ., 83 277-85 (2008).   DOI
33 Y. Zhang, N. Kohler, and M. Q. Zhang, “Surface Modification of Superparamagnetic Magnetite Nanoparticles and Their Intracellular Uptake,” Biomater., 23 1553-61 (2002).   DOI