Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.5.318

Electrochemical Properties of FeS2 Thin Film Electrodes for Thermal Batteries  

Im, Chae-Nam (The 4th R&D Institute-4, Agency for Defense Development)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.5, 2017 , pp. 318-324 More about this Journal
Abstract
Powder compaction technology is widely used to prepare thermal battery components. This method, however, is limited by the size, thickness, and geometry of the battery components. This limitation leads to excessive cell capacity, overweight, and higher cost of the pellets, which decreases the specific capacities and delays the activation time of thermal batteries. $FeS_2$ thin-film cathodes were fabricated by tape-casting technology and analyzed by SEM and EDS in this paper. The residual organic binder of the $FeS_2$ thin-film cathodes decreased with the temperature of the heat treatment, which improved the specific capacity because of the lower resistance. Specific capacities of the $FeS_2$ thin-film cathodes decreased because of the higher residual binder and the restrictive reaction of active materials with molten salts as the thickness increased. $FeS_2$ thin-film cathodes showed much higher specific capacity (1,212.2 As/g) than pellet cathodes (860.7 As/g) at the optimal heat-treatment temperature ($230^{\circ}C$).
Keywords
Thermal battery; $FeS_2$ thin film cathodes; Heat-treatment; Tape casting; Specific capacity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. S. Choi, H. R. Yu, and H. W. Cheong, J. Power Sources, 276, 102 (2015). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2014.11.103]   DOI
2 R. A. Guidotti and P. Masset, J. Power Sources, 161, 1443 (2006). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2006. 06.013]   DOI
3 D. E. Reisner, T. D. Xiao, H. Ye, J. Dai, R. A. Guidotti, and F. W. Reinhardt, J. New Mater. Electrochem. Syst., 2, 279 (1999).
4 A. G. Gevorkyan, R. Cohen, and O. Raz, Proc. 47th Power Sources Conference (Power Sources Conference, Orlando, USA, 2016) p. 90.
5 D. Harney, Proc. 44th Power Sources Conference (Power Sources Conference, Las vegas, USA, 2010) p. 669.
6 J. Reinig, Proc. 45th Power Sources Conference (Power Sources Conference, Las vegas, USA, 2012) p. 627.
7 T. Leviatan, S. Cohen, I. Eliel, G. E. Shter, A. Cohen, V. Beilin, and G. S. Grader, Proc. 45th Power Sources Conference (Power Sources Conference, Las vegas, USA, 2012) p. 635.
8 Y. S. Choi, H. R. Yu, H. W. Cheong, S. B. Cho, and Y. S. Lee, Appl. Chem. Eng., 25, 161 (2014).   DOI
9 J. P. Pemsler, R.K.F. Lam, J. K. Litchfield, S. Dallek, B. F. Larrick, and B. C. Beard, J. Electrochem. Soc., 137, 1 (1990).   DOI
10 P. Masset and R. A. Guidotti, J. Power Sources, 177, 509 (2008). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007.11.017]
11 P. Masset and R. A. Guidotti, J. Power Soureces, 178, 456 (2008). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007. 11.073]   DOI
12 H. W. Cheong, S. H. Kang, J. M. Kim, and S. B. Cho, J. Ceramic Processing Research, 13, Special 2, 198 (2012).
13 S. Fujiwara, M. Inaba, and A. Tasaka, J. Power Sources, 196, 4012 (2011). [DOI: http//dx.doi.org/10.1016/j.jpowdour.2010.05.032]   DOI
14 D. Bernardi, E. M. Pawlikowski, and J. Newman, J. Electrochem. Soc., 135, 2922 (1987).
15 D. Bernardi and J. Nweman, J. Electrochem. Soc., 134, 1309 (1987).   DOI
16 Z. Tomczuk, B. Tani, N. C. Otto, M. F. Roche, and D. R. Vissers, J. Electrochem. Soc., 129, 925 (1982).   DOI