• Title/Summary/Keyword: $Fe^{2+}$ ion concentration

Search Result 223, Processing Time 0.02 seconds

Removal of Cobalt Ion by adsorbing Colloidal Flotation (흡착 교질 포말부선법에 의한 Cobalt Ion의 제거)

  • 정인하;이정원
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • Simulated waste liquid containing 50 ppm cobalt ion was treated by adsorbing colloidal flotation using Fe(III) or Al(IlI) as flocclant and a sodium lamyl sulfate as a collector. Parameters such as pH, surfactant concentration, Fe(III) or Al(III) concentration, gas flow rate, etc., W앙e considered. The flotation with Fe(III) showed 99.8% removal efficiency of cohalt on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, and flotation time 30 min. When the waste solution, was treated with 35% $H_2O_2$ prior to adsorbing colloidal flotation, the optimal pH for removing cobalt shifted m to weak alkaline range and flotation could be applied in wider range of pH as compared to non-use of $H_2O_2$. Additional use of 20 ppm Al(III) after precipitation of 50 ppm Co(II) with 50 ppm Fe(III) made the optimal pH range for preferable flotation w wider. Foreign ions such as, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $Ca^{2+}$ were adopted and their effects were observed. Of which sulfate ion was f found to be detrimental to removal of cob퍼t ion by flotation. Coprecipitation of Co ion with Fe(III) and Al(III) resulted in b better removal efficiency of cobalt IOn 피 the presence of sulfate ion.

  • PDF

Determination of Fe(II) ion and Fe(III) ion by Chemiluminescence Method (화학발광법을 이용한 Fe(Ⅱ)이온과 Fe(Ⅲ)이온의 정량)

  • Lee, Sang Hak;Nam, Myeong Sik
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.509-514
    • /
    • 2002
  • A method to determin Fe(II) and Fe(III) ion in aqueous solution by chemiluminescence method using a stopped flow system has been studied. The method is based on the increased chemiluminescence intensity with the addition of Fe(III) ion to a solution of lucigenin and hydrogen peroxide. The effects of KOH concentration, flow rate of reagents, $H_2O_2$ concentration and citric acid concentration used for the masking of Fe(II) ion on the chemilu-minescence intensity have been investigated. The calibration curve for total Fe was linear over the range from 1.0${\times}$$10^{-6}$ M to 1.0${\times}$$10^{-4}$M, coefficient of correlation was 0.996 and the detection limit was 1.0${\times}$$10^{-7}$M under the optimal exper-imental conditions of 4.0 M, 2.0 M, 3.5 mL/min for the concentration of $H_2O_2,$ KOH and flow rate of reagents, respec-tively. The calibration curve for Fe(Ⅲ) was linear over the range from 1.0${\times}$$10^{-6}$M to 1.0${\times}10^{-4}$ M, the coefficient of correlation was 0.997 and the detection limit was 5.0${\times}$$10^{-7}$M under the optimal experimental conditions.

Study on the Enzyme of Basidiomycetes(I) -The Effects of Iron Ions on the Light-Induced Mitochondrial $F_0F_1-ATPase$ of Lentinus edodes- (담자균류의 효소에 관한 연구(I) -표고버섯 중의 광감응성 Mitochondrial $F_0F_1-ATPase$의 철이온 효과-)

  • Min, Tae-jin;Lee, Mi-Ae;Bae, Kang-Gyu
    • The Korean Journal of Mycology
    • /
    • v.21 no.3
    • /
    • pp.165-171
    • /
    • 1993
  • The effects of the iron ions for the light-induced mitochondrial $F_0F_1-ATPase$ of Lentinus edodes was studied. The enzyme activity was stimulated up to 202% by 0.1 mM $Fe^{2-}$ ion, but was inhibited by $Fe^{3+}\;and\;Mg^{2+}$. In the presence of 0.5 mM $Mg^{2+}$, the activity also increased 32% by 0.1 mM $Fe^{2+}$ ion, and decreased to a similar extent by $Fe^{3+}$ ion than by only $Fe^{3+}$ ion. Also, the activity was inhibited 53% by 5.0 mM $Fe^{2-}$ ion in the presence of 0.5 mM $Mg^{2+}$ ion and various concentration of $Fe^{3+}$ ion(mM). These results showed that $Fe^{2+}$ strongly stimulated the enzyme activity and its role for the enzyme was independent of $Mg^{2+}$ ion, but was dependent of $Fe^{3+}$ ion. From inactivation of the enzyme by addition of metal chelating agent, EDTA, it is suggested that the enzyme is to be metalloenzyme. The optimal pH and temperature of the enzyme in the presence of 0.1 mM $Fe^{2+}$ was 7.6 and $63^{\circ}C$, respectively.

  • PDF

The Corrosion Control Using CCPP(Calcium Carbonate Precipitation Potential )Index in Metallic Coupons ($CaCO_3$침전능 조절에 의한 금속시편에서의 부식방지)

  • 이재인;임진경;서상훈;김동윤;신춘환
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.505-509
    • /
    • 2000
  • The purpose of this study was to evaluate the effects of $Ca(OH)_2$ and $CO_2$ additions on the corrosion of metal coupons(ductile iron, galvanized steel, copper and stainless steel). Corrosion rate and released metal ion concentration of ductile iron and galvanized steel decreased by adjusting alkalinity, calcium hardness and pH with $Ca(OH)_2$ & $CO_2$ additions on copper and stainless steel were less than those on ductile iron and galvanized steel. When ductile iron coupon was exposed to water treated with Ca(OH)$_2$&$CO_2$, additions, the main components of corrosion product formed on its surface were $CaCO_3$ and $Fe_2 O_3 or Fe_2 O_4$ which often reduce the corrosion rate by prohibiting oxygen transport to the metal surface.

  • PDF

Selective Fe2+ Ion Recognition Using a Fluorescent Pyridinyl-benzoimidazole-derived Ionophore

  • Lee, Jeong Ah;Eom, Geun Hee;Park, Hyun Min;Lee, Ju Hoon;Song, Hyesun;Hong, Chang Seop;Yoon, Sungho;Kim, Cheal
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3625-3628
    • /
    • 2012
  • Fluorescent organic molecules that respond to changes in the $Fe^{2+}$ concentration with selectivity to other abundant di-valent metal ions will offer the ability to understand the dynamic fluctuations of the $Fe^{2+}$ ion in interesting media. The use of 6-Br-ppmbi, derived from 2-pyridin-2-yl-benzimidazole, for metal ion-selective fluorescence recognition was investigated. Screening of the main group and transition metal ions showed exclusive selectivity for $Fe^{2+}$ ions even in the presence of competing metal ions. In addition, the requirement for low concentrations of probe molecules to detect certain amounts of $Fe^{2+}$ ions make this sensor unique compared to previously reported $Fe^{2+}$ ion sensors.

Effects of Electrolyte Concentration on Electrochemical Properties of an Iron Hexacyanoferrate Active Material (헥사시아노 철산철 활물질의 전기화학적 특성에 미치는 전해질 농도의 영향)

  • Yang, Eun-Ji;Lee, Sangyup;Nogales, Paul Maldonado;Jeong, Soon-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.117-123
    • /
    • 2021
  • The effects of electrolyte concentration on the electrochemical properties of Fe4[Fe(CN6)]3(FeHCF) as a novel active material for the electrode of aqueous zinc-ion batteries was investigated. The electrochemical reactions and structural stability of the FeHCF electrode were significantly affected by the electrolyte concentration. In the electrolyte solutions of 1.0-7.0 mol dm-3, the charge-discharge capacities increased with increasing electrolyte concentration, however gradually decreased as the cycle progressed. On the other hand, in the 9.0 mol dm-3 electrolyte solution, the initial capacity was relatively small, however showed good cyclability. Additionally, the FeHCF electrode after five cycles in the former electrolyte solutions, had a change in crystal structure, whereas there was no change in the latter electrolyte solution. This suggests that the performance of the FeHCF electrode is greatly influenced by the hydration structure of zinc ions present in electrolyte solutions.

The Characteristics of Iron(Fe) Floc Formation for Treatment of Acid Mine Drainage (산성 광산 배수의 처리를 위한 철(Fe) 성분의 플럭 형성 특성)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.89-92
    • /
    • 2013
  • The characteristics of floc formation of the iron(Fe) ions was studied for developing the process treating the acid mine drainage. The metal ions in aqueous solution oxidized with oxygen in air, which generated hydrogen ion and lowered the pH of the aqueous solution. The iron(Fe) ions were formed into flocs by the acid-base reaction with the added $Ca(OH)_2$ for the neutralizing the solution. There were several variables affecting the formation, size and color of floc; whether air was present or not, air feeding rate, oxidizing time, concentration of $Ca(OH)_2$, the acid-base reaction time of the $iron(Fe)-Ca(OH)_2$. For proper formation of the $iron(Fe)-Ca(OH)_2$ flocs and developing the floc treating system, the control variables mentioned above should be considered.

  • PDF

Characteristics of manganese removal by ozonation: Effect of existing co-ion and optimum dosage (오존을 이용한 용존성 망간 제거 특성: 공존이온의 영향 및 최적주입량)

  • Kwak, Yeonwoo;Lee, Seulki;Lee, Yongsoo;Hong, Seongho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.145-152
    • /
    • 2018
  • This study is focused on manganese (Mn(II)) removal by ozonation in surface water. Instant ozone demand for the water was 0.5 mg/L in the study. When 0.5 mg/L of Mn(II) is existed in water, the optimum ozone concentration was 1.25 mg/L with reaction time 10 minutes to meet the drinking water regulation. The ozone concentration to meet the drinking water regulation was much higher than the stoichiometric concentration. The reaction of soluble manganese removal was so fast that the reaction time does not affect the removal dramatically. When Mn(II) is existed with Fe, the removal of Mn(II) was not affected by Fe ion. However As(V) is existed as co-ion the removal of Mn(II) was decreased by 10%. Adding ozone to surface water has limited effect to remove dissolved organic matter. When ozone is used as oxidant to remove Mn(II) in the water, the existing co-ion should be evaluated to determine optimum concentration.

Effect of Iron Ion on Cell Division and Microcallus Growth in Mesophyll Protoplast Cultures of Arabidopsis thaliana (철이온이 Arabidopsis thaliana 초기 원형질체배양의 세포분열 및 미세 캘러스 생장에 미치는 효과)

  • 박현용
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.6
    • /
    • pp.339-343
    • /
    • 1995
  • This study was performed to investigate the effect of iron ion on the mesophyll protoplast culture of Arabidopsis thaliana. Mesophyll protoplasts were isolated and cultured in a modified IMH medium supplemented with various concentrations of Fe-EDTA. Relatively low concentration of Fe-EDTA (<0.02 mM) induced the low level (4.8%) of cell division. In addition the cell division and microcallus growth were dose-dependently stimulated by 0 to 1 mM of Fe-EDTA. In 0.5 to 1 mM concentration range of Fe-EDTA, microcolonies were readily formed and the plating deficiency (8.5%) also showed maximal rate. However more than 1 mM of Fe-EDTA inhibited the initial growth of protoplase. The overall results suggest that Fe2+ion concentration plays an important role at the early developmental stage of protoplast regeneration.

  • PDF

The Removal of Heavy Metals in Aqueous Solution by Hydroxyapatite (Apatite를 이용한 중금속 제거)

  • 강전택;정기호
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.325-330
    • /
    • 2000
  • The hydroxyapatite (HAp) for the present study was prepared by precipitation method in semiconductor fabrication and the crystallized at ambient to 95$0^{\circ}C$ for 30min in electric furnace. The ion-exchange characteristics of HAp for various heavy metal ions such as $Cd^{2+}, Cu^{2+}, Mn^{2+}, Zn^{2+}, Fe^{2+}, Pb^{2+}, Al^{3+}, and Cr^{6+}$ in aqueous solution has been investigated. The removal ratio of various metal ions for HAp were investigated with regard to reaction time, concentration of standard solution, amount of HAp and pH of solution. The order of the ions exchanged amount was as follws: $Pb^{2+}, Fe^{3+}>Cu^{2+}>Zn^{2+}>Al^{3+}>Cd^{2+}>Mn^{2+}>Cr^{6+}. The Pb^{2+}$ ion was readily removed by the Hap, even in the strongly acidic region. The maximum amount of the ion-exchange equilibrium for $Pb^{2+}$ ion was about 45 mg/gram of HAp. The HAp would seem to be possible agent for the removal of heavy metal ions in waste water by recycling of waste sludge in semiconductor fabrication.

  • PDF