• Title/Summary/Keyword: $Fe/Al_2O_3$ catalyst

Search Result 54, Processing Time 0.039 seconds

Effect of Fe Addition on Hydrogen Rich NSR Kinetics over Pt/Co/Ba/Al2O3 Catalyst (Pt/Co/Ba/Al2O3에 Fe 첨가가 수소 풍부 NSR 반응성에 미치는 영향)

  • Kim, Jingul;Jeon, Jiyong;Kim, Seongsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.581-587
    • /
    • 2012
  • Thermal aging effect on NSR kinetics was studied over Pt/Co/Fe/Ba/$Al_2O_3$ catalyst. The amount of $NO_x$ uptake over Pt/Co/Fe/Ba/$Al_2O_3$ calcined at $400^{\circ}C$ increased with increasing NSR temperature from $200^{\circ}C$ to $400^{\circ}C$, where amount of $NO_x$ uptake is the highest at $400^{\circ}C$ with mol ratio of $NO_x$/Ba = 0.5. Thereafter, the amount of $NO_x$ uptake at $400^{\circ}C$ decreased with the higher calcination temperature, where Pt/Co/Fe/Ba/$Al_2O_3$ catalyst calcined at $700^{\circ}C$ showed an amount of $NO_x$ uptake with the mol ratio of $NO_x$/Ba=0.062. Result of XRD and NSR showed that Fe addition into Pt/Co/Fe/Ba/$Al_2O_3$ suppressed sintering of Pt crystallites and make $NO_x$ uptake larger, compared to no addition of Fe into Pt/Co/Fe/Ba/$Al_2O_3$ catalyst. From BET result, it was found that the change of specific surface area was relatively small by the thermal aging process. Therefore, it was found that the sintering of Pt crystallites caused the decrease of $NO_x$ uptake during NSR reaction and Fe played a role to suppress the sintering process of Pt crystallites caused by thermal aging.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.

Hydrogen Production by Auto-thermal Reforming of Ethanol over $M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) Catalysts ($M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) 촉매 상에서 에탄올 자열개질반응에 의한 수소 제조)

  • Youn, Min-Hye;Seo, Jeong-Gil;Cho, Kyung-Min;Park, Sun-Young;Kim, Pil;Song, In-Kyu
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.287-292
    • /
    • 2007
  • [ $M/Al_2O_3$ ] (M = Mn, Fe, Co, Ni, Cu) catalysts supported on commercial alumina ($Al_2O_3$) were prepared by an impregnation method, and were applied to the hydrogen production by auto-thermal reforming of ethanol. It was revealed that each catalyst retained its own metallic phase and product distribution strongly depended on the identity of active metal. Among the catalysts prepared, $Ni/Al_2O_3$ and $Co/Al_2O_3$ showed the best catalytic performance in the auto-thermal reforming of ethanol. However, the reaction mechanisms over these two catalysts were different. Ni/Al_2O_3 catalyst showed 100% ethanol conversion at $500^{\circ}C$, but it exhibited a rapid decrease in hydrogen selectivity. Although $Co/Al_2O_3$ catalyst showed an excellent performance in hydrogen selectivity, on the other hand, no significant improvement in hydrogen yield was observed due to the low ethanol conversion over the catalyst.

  • PDF

A Study on Catalysts for Simultaneous Removal of 1,2-Dichlorobenzene and NOx (1,2-Dichlorobenzene 및 질소산화물 동시제거를 위한 촉매연구)

  • Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.522-526
    • /
    • 2009
  • The catalytic oxidation of 1,2-dichloribenzene (1,2-DCB) and simultaneous catalytic reduction of nitrogen oxides over the single catalyst has been investigated over various metals (Ru, Mn, Co and Fe) supported on $Al_2O_3$ and $CeO_{2}$. The activity of the different catalysts for catalytic oxidation of 1,2-dichloribenzene depended on the used metal, Ru/Co/$Al_2O_3$, Mn-Fe/CeO2 and Cr/$Al_2O_3$ (commercial catalysts) being the most actives ones. In the catalytic oxidation of chlorobenzene (CB), Ru/Co/$Al_2O_3$ is better than Pt-Pd/$Al_2O_3$, which is the well-known catalyst good for VOC oxidation. Furthermore, it has a good durability on the deactivation by $Cl_2$ and sulfur. For nitrogen oxides (NOx) removal, NOx conversion was 70% at $260^{\circ}C$.

Effect of $Al_2O_3/Fe$ Ratio on Characteristics of Carbon Nanotubes Prepared by Catalytic Chemical Vapor Deposition

  • Jung, Sung-Sil;Lee, Dae-Yeol;Chung, Won-Sub;Park, Ik-Min
    • Carbon letters
    • /
    • v.5 no.2
    • /
    • pp.81-87
    • /
    • 2004
  • The effect of compositions of $Al_2O_3$ in the mixed $Fe/Al_2O_3$ catalysts on the synthetic behaviors of carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CCVD) process was investigated in wide range of the mixture ratios of support materials. CNTs were synthesized with $Fe/Al_2O_3$ catalysis under the condition of 40 min in synthetic time, and 923 K of synthetic temperature using $C_2H_4$ and $H_2$ as synthetic and carrier gas, respectively. The carbon yield with the content of $Al_2O_3$ showed in a parabolic curve and the maximum carbon yield was 40 wt.% of $Al_2O_3$. As the mixture ratio of $Al_2O_3$ increased, decreasing tendency was observed in the diameter of CNTs. Specific surface areas of CNTs were increased with the increase of the mixture ratio of $Al_2O_3$.

  • PDF

The Performance of NI/$MgAl_2O_4$ Coated Metal Monolith in Natural Gas Steam Reforming for Hydrogen Production (NI/$MgAl_2O_4$코팅된 금속 모노리스 촉매의 수소 생산을 위한 천연가스 수증기 개질 반응특성에 관한 연구)

  • Choi, Eun-Jeong;Koo, Kee-Young;Jung, Un-Ho;Rhee, Young-Woo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.500-506
    • /
    • 2010
  • The metal monolith catalyst coated with 15wt% Ni/$MgAl_2O_4$ is applied to the natural gas steam reforming for hydrogen production. To address the improvement of adherence between metal monolith and catalyst coating layer, the pre-calcination temperature as well as the coating conditions of $Al_2O_3$ sol are optimized. When the Fe-Cr alloy monolith is pre-calcined at $900^{\circ}C$ for 6 h, $Al_2O_3$ layer was formed uniformly on the entire surface of the metal substrate. It is seen that the formation of $Al_2O_3$ layer on the monolith surface is essential for the uniform coating of $Al_2O_3$ sol onto the monolith substrate. The monolith catalyst coated with 10wt% $Al_2O_3$ sol shows high $CH_4$ conversion and good thermal stability as compared with the monolith catalyst without $Al_2O_3$ sol coating under severe reaction conditions with high GHSV of 30,000 $h^{-1}$ at $700^{\circ}C$. In addition, the metal monolith catalyst shows higher catalytic activity and better thermal conductivity than 15wt% Ni/$MgAl_2O_4$ pellet catalyst.

Decomposition Characteristics of Aniline Treated in Fe2O3 Supported γ-Alumina Catalyst and O3 (Fe2O3γ-Al2O3 세라믹촉매와 오존을 이용한 아닐린의 분해특성)

  • Park, Byung-Ki;Suh, Jeong-Kwon;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.237-244
    • /
    • 2005
  • We prepared the cylindrical $\gamma-alumina$ pellets of 5 mm in diameter and 10 mm in average length using amorphous alumina and pore generating agent. The pellets were immersed in an aqueous solution of the mixture of $Fe(NO_{3})_{3}{\cdot}9H_{2}O$ and $CH_{3}COOH$. They were then hydrothermally treated at $200^{\circ}C$ for 3 h in autoclave, dried and calcined. For the application as an environmental catalyst, we investigated the decomposition characteristics of aniline and the initiation characteristics of $OH^{\cdot}$ conversion action in $O_{3}$ environment with or without the $Fe_{2}O_{3}$ supported y-alumina catalyst and $O_{3}$ molecule.

Simultaneous Oxidation of NO, CO, and CH4 over Mn-Cu/Al2O3 Catalyst (Mn-Cu/Al2O3 촉매 상에서 NO, CO 및 CH4 동시 산화)

  • Ji Eun Jeong;Chang-Yong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Mn-M/Al2O3 (M = Cu, Fe, Co, and Ce) catalysts were prepared for simultaneous oxidation of NO, CO, and CH4, and their oxidation activities were compared. The Mn-Cu/ Al2O3 catalyst with the best simultaneous oxidation activity was characterized by XRD, Raman, XPS, and O2-TPD analysis. The result of XRD indicated that Mn and Cu existed as complex oxides in the Mn-Cu/Al2O3 catalyst. Raman and XPS results showed that electron transfer between Mn ions and Cu ions occurred during the formation of the Mn-O-Cu bond in the Mn-Cu/Al2O3 catalyst. The XPS O 1s and O2-TPD analyses showed that the Mn-Cu/Al2O3 catalyst has more adsorbed oxygen species with high mobility than the Mn/Al2O3 catalyst. The high simultaneous oxidation activity of the Mn-Cu/Al2O3 catalyst is attributed to these results. Gas-phase NO promotes the oxidation reactions of CO and CH4 in the Mn-Cu/Al2O3 catalyst while suppressing the NO oxidation reaction. These results were presumed to be because the oxidized NO was used as an oxidizing agent for CO and CH4. On the other hand, the oxidation reactions of CO and CH4 competed on the Mn-Cu/Al2O3 catalyst, but the effect was not noticeable because the catalyst activation temperature was different.

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

Controlled Synthesis of Single-Walled Carbon Nanotubes

  • Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.2-2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWNTs) have been considered as a promising candidate for nextgeneration electronics due to its extraordinary electrical properties associated with one-dimensional structure. Since diversity in electronic structure depends on geometrical features, the major concern has been focused on obtaining the diameter, chirality, and density controlled SWNTs. Despite huge efforts, the controlled synthesis of SWNTs has not been achieved. There have been various approaches to synthesize controlled SWNTs by preparation of homogeneously sized catalyst because the SWNTs diameter highly depends on catalyst nanoparticles size. In this study, geometrically controlled SWNTs were synthesized using designed catalytic layers: (a) morphologically modified Al2O3 supporting layer (Fe/Al2O3/Si), (b) Mo capping layer (Mo/Fe/Al/Si), and (c) heat-driven diffusion and subsequent evaporation process of Fe catalytic nanoparticles (Al2O3/Fe/Al2O3/Si). These results clearly revealed that (a) the grain diameter and RMS roughness of Al2O3 supporting layer play a key role as a diffusion barrier for obtaining Fe nanoparticles with a uniform and small size, (b) a density and diameter of SWNTs can be simultaneously controlled by adjusting a thickness of Mo capping layer on Fe catalytic layer, and (c) SWNTs diameter was successfully controlled within a few A scale even with its fine distribution. This precise control results in bandgap manipulation of the semiconducting SWNTs, determined by direct comparison of Raman spectra and theory of extended tight binding Kataura plot. We suggest that these results provide a simple and possible way for the direct growth of diameter, density, and bandgap controlled SWNTs by precise controlling the formation of catalytic films, which will be in demand for future electronic applications.

  • PDF