• Title/Summary/Keyword: $ETM^+$

Search Result 267, Processing Time 0.019 seconds

Method of Integrating Landsat-5 and Landsat-7 Data to Retrieve Sea Surface Temperature in Coastal Waters on the Basis of Local Empirical Algorithm

  • Xing, Qianguo;Chen, Chu-Qun;Shi, Ping
    • Ocean Science Journal
    • /
    • v.41 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • A useful radiance-converting method was developed to convert the Landsat-7 ETM+thermal-infrared (TIR) band's radiance ($L_{{\lambda},L7/ETM+}$) to that of Landsat-5 TM TIR ($L_{{\lambda},L5/TM+})$ as: $L_{{\lambda},L5/TM}=0.9699{\times}L_{{\lambda},L7/ETM+}+0.1074\;(R^2=1)$. In addition, based on the radiance-converting equation and the linear relation between digital number (DN) and at-satellite radiance, a DN-converting equation can be established to convert DN value of the TIR band between Landsat-5 and Landsat-7. Via this method, it is easy to integrate Landsat-5 and Landsat-7 TIR data to retrieve the sea surface temperature (SST) in coastal waters on the basis of local empirical algorithms in which the radiance or DN of Lansat-5 and 7 TIR band is usually the only input independent variable. The method was employed in a local empirical algorithm in Daya Bay, China, to detect the thermal pollution of cooling water discharge from the Daya Bay nuclear power station (DNPS). This work demonstrates that radiance conversion is an effective approach to integration of Landsat-5 and Landsat-7 data in the process of a SST retrieval which is based on local empirical algorithms.

ANALYSIS OF THE CHARACTERISTICS ABOUT GYEONG-GANG FAULT ZONE THROUGH REMOTE SENSING TECHNIQUES

  • Hwang, Jin-Kyong;Choi, Jong-Kuk;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.196-199
    • /
    • 2008
  • Lineament is defined generally as a linear feature or pattern on interpretation of a satellite image and indicates the geological structures such as faults and fractures. For this reason, a lineament extraction and analysis using remote sensing images have been widely used for mapping large areas. The Gyeong-gang Fault is a NNE trending structure located in Gangwon-do and Kyeonggi-do district. However, a few geological researches on that fault have been carried out and its trace or continuity is ambiguous. In this study, we investigate the geologic features at Gyeong-gang Fault Zone using LANDSAT ETM+ satellite image and SRTM digital elevation model. In order to extract the characteristics of geologic features effectively, we transform the LANDSAT ETM+ image using Principal Component Analysis (PCA) and create a shade relief from SRTM data with various illumination angles. The results show that it is possible to identify the dimensions and orientations of the geologic features at Gyeong-gang Fault Zone using remote sensing data. An aerial photograph interpretation and a field work will be future tasks for more accurate analysis in this area.

  • PDF

Evaluation of a Non-destructive Diagnostic Test for Kudoa septempunctata in Farmed Olive Flounder Paralichthys olivaceus (넙치(Paralichthys olivaceus) 근육 채취 방법에 따른 Kudoa septempunctata 진단 효율 비교)

  • Song, Jun-Young;Jung, Sung Hee;Choi, Hye-Sung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • Kudoa septempunctata, a myxosporean parasite that infects olive flounder Paralichthys olivaceus is known to cause Kudoa food poisoning. Entire trunk muscle (ETM) is used for diagnosis of the parasite in fish and this method demands sacrifice of the host, causing a loss of commercial value. We developed a non-destructive method that uses a plastic syringe-style implanter to draw the sample, called the part-point muscle (PPM) sampling technique. We validated the PPM method in fish infected with K. septempunctata at the level detectable by the ETM method. We confirmed that the PPM method is equally sensitive in comparison to the ETM method for diagnosing K. septempunctata spores in olive flounder muscle. Our study also confirmed that the parasite is uniformly distributed in the dorsal muscle of infected fish. Over a period of 1 month, we observed no mortality of the host fish used for sampling by the PPM method. Thus, our studies demonstrate that the PPM sampling technique is an efficient, non-destructive method for diagnosing K. septempunctata in olive flounder.

Spatial Distribution Mapping of Cyanobacteria in Daecheong Reservoir Using the Satellite Imagery (위성영상을 이용한 대청호 남조류의 공간 분포 맵핑)

  • Back, Shin Cheol;Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.53-63
    • /
    • 2016
  • Monitoring of cyanobacteria bloom in reservoir systems is important for water managers responsible of water supply system. Cyanobacteria affect the taste and smell of water and pose considerable filtration problems at water use places. Harmful cyanobacteria bloom in reservoir have significant economic impacts. We develop a new method for estimating the cyanobacteria bloom using Landsat TM and ETM+ data. Developed model was calibrated and cross-validated with existing in situ measurements from Daecheong Reservoir's Water Quality Monitoring Program and Algae Alarm System. Measurements data of three stations taken from 2004 to 2012 were matched with radiometrically converted reflectance data from the Landsat TM and ETM+ sensor. Stepwise multiple linear regression was used to select wavelengths in the Landsat TM and ETM+ bands 1, 2 and 4 that were most significant for predicting cyanobacteria cell number and bio-volume. Based on statistical analysis, the linear models were that included visible band ratios slightly outperformed single band models. The final monitoring models captured the extents of cyanobacteria blooms throughout the 2004-2012 study period. The results serve as an added broad area monitoring tool for water resource managers and present new insight into the initiation and propagation of cyanobacteria blooms in Daecheong reservoir.

Burned Area Detection After Wildfire Using Landsat 7 ETM+ SLC-off Images

  • Quoc, Khanh Le;Sy, Tan Nguyen;Nhat, Thanh Nguyen Thi;Thanh, Ha Le
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.117-129
    • /
    • 2013
  • The increasing demand for monitoring wildfires and their impact on the land surface have prompted studies of burned area extraction and analysis. To differentiate burned and unburned area, the earlier method of the Moderate Resolution Imaging Spectro-radiometer (MODIS) Burned Area Detection Algorithm was proposed to estimate the change in land surface based on the reflectance energy. The energy, whose wavelengths are sensitive to burning, was selected to calculate the change parameter $Z_{score}$. This method was applied using the MODIS images to produce a MODIS Burned Area product. The approach was to simplify this algorithm to make it compatible with the Landsat 7 ETM+ SLC-off images. To extract the refined version of burned regions, post-processing was carried out by applying a median filter, dilation morphology algorithm, and finally a gap filling method. The experimental results showed that the detailed burned areas extracted from the proposed method exhibited more spatial details than those of the MODIS Burned products in the large U.S areas. The results also revealed the discontinuous distribution of burned regions in Vietnam forests.

  • PDF

A Statistic Correlation Analysis Algorithm Between Land Surface Temperature and Vegetation Index

  • Kim, Hyung-Moo;Kim, Beob-Kyun;You, Kang-Soo
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.102-106
    • /
    • 2005
  • As long as the effective contributions of satellite images in the continuous monitoring of the wide area and long range of time period, Landsat TM and Landsat ETM+ satellite images are surveyed. After quantization and classification of the deviations between TM and ETM+ images based on approved thresholds such as gains and biases or offsets, a correlation analysis method for the compared calibration is suggested in this paper. Four time points of raster data for 15 years of the highest group of land surface temperature and the lowest group of vegetation of the Kunsan city Chollabuk_do Korea located beneath the Yellow sea coast, are observed and analyzed their correlations for the change detection of urban land cover. This experiment based on proposed algorithm detected strong and proportional correlation relationship between the highest group of land surface temperature and the lowest group of vegetation index which exceeded R=(+)0.9478, so the proposed Correlation Analysis Model between the highest group of land surface temperature and the lowest group of vegetation index will be able to give proof an effective suitability to the land cover change detection and monitoring.

Estimation of Forest LAI in Close Canopy Situation Using Optical Remote Sensing Data

  • Lee, Kyu-Sung;Kim, Sun-Hwa;Park, Ji-Hoon;Kim, Tae-Geun;Park, Yun-Il;Woo, Chung-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.305-311
    • /
    • 2006
  • Although there have been several attempts to estimate forest LAI using optical remote sensor data, there are still not enough evidences whether the NDVI is effective to estimate forest LAI, particularly in fully closed canopy situation. In this study, we have conducted a simple correlation analysis between LAI and spectral reflectance at two different settings: 1) laboratory spectral measurements on the multiple-layers of leaf samples and 2) Landsat ETM+ reflectance in the close canopy forest stands with fieldmeasured LAI. In both cases, the correlation coefficients between LAI and spectral reflectance were higher in short-wave infrared (SWIR) and visible wavelength regions. Although the near-IR reflectance showed positive correlations with LAI, the correlations strength is weaker than in SWIR and visible region. The higher correlations were found with the spectral reflectance data measured on the simulated vegetation samples than with the ETM+ reflectance on the actual forests. In addition, there was no significant correlation between the forest.LAI and NDVI, in particular when the LAI values were larger than three. The SWIR reflectance may be important factor to improve the potential of optical remote sensor data to estimate forest LAI in close canopy situation.

Correlation Analysis Between Forest Volume, ETM+ Bands, and Height Estimated from C-Band SRTM Product

  • Kim, Jin-Woo;Kim, Jong-Hong;Lee, Jung-Bin;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.427-431
    • /
    • 2006
  • Forest stand height and volume are important indicators for management purpose as well as for the environmental analysis. Shuttle Radar Topography Mission (SRTM) is backscattered over forest canopy and DSM can be acquired from such scattering characteristic, while National Elevation Dataset (NED) provides bare earth elevation data. The difference between SRTM and NED is estimated as tree height, and it is correlated with forest parameters, it is correlated with forest parameters, including average DBH, Trees per acre, net BF per acre, and total Net MBF. Especially, among them, net Board Foot(BF) per acre is the index that well represents forest volume. The Project site was Douglas-fir dominating plantation area in the western Washington an the northern Oregon in the U.S. This study shows a relationship of high correlation between the forest parameters and the product from SRTM, NED, and ETM+. This research performs multi regression analysis and regression tree algorithm, and can get more improved relationship between several parameters.

Analyzing the spectral characteristic and detecting the change of tidal flat area in Seo han Bay, North Korea using satellite images and GIS (위성영상과 GIS를 이용한 북한 서한만 지역의 간석지 분광특성 및 변화 탐지)

  • Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.44-54
    • /
    • 2005
  • In this study the tidal area in Seo han bay, North Korea was detected and extracted by using various satellite images (ASTER, KOMPSAT EOC, Landsat TM/ETM+) and GIS spatial analysis. Especially, the micro-landform was classified through the spectral characteristic of each satellite image and the change of tidal flat size was detected on passing year. For this, the spectral characteristics of eight tidal flat area in Korea, which are called as Seo han bay, Gwang ryang bay, Hae iu bay, Gang hwa bay, A san bay, Garorim bay, Jul po bay and Soon chun bay, were analyzed by using multi band of multi spectral satellite images such as Landsat TM/ETM+. Moreover, the micro-landform tidal flat in Seo han bay, North Korea was extracted by using ISODATA clustering based on the result of spectral characteristic. In addition, in order to detect the change of tidal flat size on passing years, the ancient topography map (1918-1920) was constructed as GIS DB. Also, the tidal flat distribution map based on the temporal satellite images were constructed to detect the tidal flat size for recent years. Through this, the efficient band to classify the micro-landform and detect its boundary was clarified and one possibility of KOMPSAT EOC application could be also introduced by extracting the spatial information of tidal flat efficiently.

  • PDF

Application of Landsat ETM Image Indices to Classify the Wildfire Area of Gangneung, Gangweon Province, Korea (강원도 강릉시 일대 산불지역 분류를 위한 Landsat ETM 영상 분류지수의 활용)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Chung, Gong-Soo;Lee, Jin-Young
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.754-763
    • /
    • 2004
  • This study was aimed to examine the Landsat Enhanced Thematic Mapper Plus (ETM+) index, which matches well with the field survey data in the wildfire area of Gangneung, Gangweon Province, Korea. In the wildfire area NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), and Tasseled Cap Transformation Index (Brightness, Wetness, Greenness) were compared with field survey data. NDVI and SAVI were very useful in detecting the difference between the wildfire and non-wildfire area, but not so in classify the soil types in the wildfire area. The soil plane based on the Tasseled Cap Transformation showed a better result in classifying the soil types in the wildfire areas than NDVI and SAVI, and corresponded well with field survey data. Using a linear function based on greenness and wetness in the Tasseled Cap Transformation is expected to provide a more efficient and quicker method to classify wildfire areas.